You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Adaptive Space-Time Radar Techniques and Waveforms

    SBC: CHIRP CORP.            Topic: N04T007

    The problem is to improve airborne maritime radar detection of small moving targets in clutter, where the clutter varies with time, range, azimuth, sea state, grazing angle, wind speed, and the look direction of the radar relative to the wind direction. A new version of space-time adaptive processing (STAP) is applied to the problem. The new technique provides improved covariance estimation for ...

    STTR Phase II 2006 Department of DefenseNavy
  2. Additive Manufacturing for Naval Aviation Battery Applications

    SBC: STORAGENERGY TECHNOLOGIES INC            Topic: N18AT008

    The objective of the efforts being proposed is to develop high energy density and power density batteries with long cycle life by high-speed additive manufacturing technologies.

    STTR Phase II 2019 Department of DefenseNavy
  3. Additive Manufacturing for Naval Aviation Battery Applications

    SBC: TEXAS RESEARCH INSTITUTE , AUSTIN, INC.            Topic: N18AT008

    Texas Research Austin (TRI-Austin) will continue to partner with the University of Texas, Austin, to use additive manufacturing for fabricating and optimizing the lithium ion and electroactive metal electrode systems for which the team established proof of concept in the Phase I base period. The Aerosol Deposition Method (ADM) is a broadly applicable additive manufacturing technology that has been ...

    STTR Phase II 2019 Department of DefenseNavy
  4. Advanced Flywheel Energy Storage for Pulsed Power Applications

    SBC: CALNETIX            Topic: N04T013

    During the NAVY STTR Phase II Calnetix will further develop its concept of advanced flywheel system proposed in Phase I and will demonstrate the validity of the underlying principles through building and testing a system prototype. This prototype will be a fully functional system capable of supporting up to 2MW of pulse power with the ability of producing 500kW (30 seconds) loads in high-duty-cyc ...

    STTR Phase II 2006 Department of DefenseNavy
  5. Advanced Optically-driven Spin Precession Magnetometer for ASW

    SBC: POLATOMIC, INC.            Topic: N04T002

    This SBIR Phase II proposal describes the development of a breadboard Advanced Optically-driven Spin Precession Magnetometer (AOSPM), an ultra high-sensitivity scalar laser magnetometer for airborne ASW. The AOSPM is an innovative high-sensitivity instrument capable of measuring scalar DC and ELF magnetic fields with a sensitivity better than 10.0 fT/root-Hz. Since the high sensitivity AOSPM is a ...

    STTR Phase II 2006 Department of DefenseNavy
  6. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N10AT002

    The objective of the proposed Phase II STTR effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will bu ...

    STTR Phase II 2015 Department of DefenseNavy
  7. A Novel Single Sideband Suppressed-Carrier (SSB-SC) Technique for High Dynamic Range Analog Applications

    SBC: IPITEK, Inc.            Topic: N05T008

    Photonic links and networks offer numerous advantages to analog RF systems, and enable advanced performance in Naval aircraft analog RF systems: spurious-free dynamic range (SFDR) exceeding 125 dB/Hz^2/3 with instantaneous bandwidth up to and exceeding 1GHz for operational frequencies from 0.1 to 20 GHz. IPITEK proposes a novel single sideband suppressed-carrier (SSB-SC) technique that offers a ...

    STTR Phase II 2006 Department of DefenseNavy
  8. APEX: Adaptive and Peripheral surveillance fusion Engine

    SBC: DEUMBRA, INC.            Topic: N05T019

    It is computationally infeasible to implement a complete Level 2/3-fusion solution that has detailed knowledge of all parts of an area of interest all the time. A staged approach is needed where the first stage implements a real time peripheral vision sensor analysis to identify asymmetric threats. The second stage implements a “foveal vision” sensor analysis that identifies, links and valid ...

    STTR Phase II 2006 Department of DefenseNavy
  9. ARCHIMEDES

    SBC: SOAR TECHNOLOGY INC            Topic: N17AT004

    Evidence-based guidelines derived from the learning sciences literature can be applied to training-requirements decisions. However, accessing the state-of-the-art in the learning sciences and applying its lessons to specific training design and analysis questions can be difficult, especially for those not already familiar with the learning sciences. ARCHIMEDES, the software tool proposed in this e ...

    STTR Phase II 2019 Department of DefenseNavy
  10. Cognitive Adaptation and Mission Optimization (CAMO) for Autonomous Teams of UAS Platforms

    SBC: OPTO-KNOWLEDGE SYSTEMS INC            Topic: N17BT035

    The Navy needs cognitive control capabilities that enable an autonomous robotic team comprised of a ground control station node and a team of UAS platforms to operate independently (or with minimal human oversight) while carrying out complex missions. A cognitive control capability needs to be developed that concurrently optimizes the balance of mission risk / performance with respect to the Navy ...

    STTR Phase II 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government