You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Optimization of Fatigue Test Signal Compression Using The Wavelet Transform

    SBC: ATA Engineering, Inc.            Topic: N18BT029

    ATA Engineering has developed a wavelet-based damage squeezing methodology for generating optimally compressed fatigue test signals that produce an equivalent amount of fatigue damage in a predictably reduced amount of time compared to the baseline (uncompressed) signals. Fatigue-critical signal characteristics (e.g., magnitude, phase, frequency, and sequencing relationships) are identified in the ...

    STTR Phase II 2020 Department of DefenseNavy
  2. Systematic Fatigue Test Spectrum Editing Using Wavelet Transformations

    SBC: TECHNICAL DATA ANALYSIS, INC.            Topic: N18BT029

    Our Phase I effort showed that spectrum compression could be successfully achieved via Wavelet Transform (WT) based Fatigue Spectrum Editing (FSE) techniques for uniaxial HCF spectra cases. For example, 85% reduction in spectrum length can be achieved in the case of the original FELIX spectrum. However, the extension of the same FSE technique to multi-axial HCF cases showed less desirable results ...

    STTR Phase II 2020 Department of DefenseNavy
  3. Detection Rate Improvements Through Understanding and Modeling Ocean Variability

    SBC: Ocean Acoustical Services and Instrumentation Systems, Inc.            Topic: N18AT002

    The littoral environment is especially demanding on tactical sonar systems, in large part because the spatial and temporal variability imposes sonar system operating conditions of a nature and with a scale heretofore not encountered in the open oceans. Recent Office of Naval Research (ONR) sponsored basic research as well as fleet exercises have shown that littoral environments tactically importan ...

    STTR Phase II 2020 Department of DefenseNavy
  4. Comprehensive Surf Zone Modeling Tool

    SBC: Arete Associates            Topic: N19AT010

    The objective of this project is to advance the capabilities of the Coastal Battlefield Reconnaissance and Analysis (COBRA) system by creating a Surf Zone Modelling Tool (SZT) that can create realistic synthetic imagery of the surf zone (SZ). Through the use of this synthetic imagery the COBRA Program will be enabled to inform concept of operations (CONOPS) in unfamiliar environments as well as mo ...

    STTR Phase II 2020 Department of DefenseNavy
  5. A Wavelength-Scalable Dual-Stage Photonic Integrated Circuit Spectrometer

    SBC: Physical Sciences Inc.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase II 2020 Department of DefenseNavy
  6. Conjugate heat transfer for LES of gas turbine engines

    SBC: CASCADE TECHNOLOGIES, INC.            Topic: N19BT027

    Current design tools for gas turbine engines invoke a variety of simplifying assumptions to estimate heat transfer to solid/metal engine components (e.g., isothermal boundary conditions). These approximations are often not valid, result in inaccurate predictions of heat transfer, and ultimately compromise the thermal integrity of propulsion and power systems. Wall-modeled large eddy simulation (WM ...

    STTR Phase II 2020 Department of DefenseNavy
  7. Joint User-Centered Planning Artificial Intelligence Tools Effective Mission Reasoning (JUPITER)

    SBC: Charles River Analytics, Inc.            Topic: N19BT029

    Effective mission planning is critical for military strategy and execution. This process is complex as human operators must consider many variables (e.g., resource limitations, threats, risks) when formulating a plan to accomplish mission goals. Although powerful tools, such as the Navy’s Joint Mission Planning System (JMPS), provide advanced functionality, mission planning remains a hybrid acti ...

    STTR Phase II 2020 Department of DefenseNavy
  8. Unmanned Aerial System with Infinite Energy Scavenging

    SBC: Nanosonic Inc.            Topic: N19AT019

    The objective of this Navy Phase II STTR program is to design, develop and manufacture energy scavenging modules for “small unit power” architecture. The energy scavenging modules (ESMs) developed in this program will be able to capture the magnetic fields surrounding electrical power lines and electrical equipment and convert their energy into electricity. The ESMs will be designed to have th ...

    STTR Phase II 2020 Department of DefenseNavy
  9. Local Stochastic Prediction for UUV/USV Environmental Awareness

    SBC: Applied Ocean Sciences, LLC            Topic: N19AT022

    This project delivers a compact system to assess and reduce local uncertainties that impact routing and sensor operation decisions while tracking the evolution of the maritime environment around unmanned platforms at sea (UUV/USV). The system runs both at control centers and on-board the UUV/USV’s, subject to different network bandwidth and computing environments Size, Weight and Power (SWaP) co ...

    STTR Phase II 2020 Department of DefenseNavy
  10. Predictive Graph Convolutional Networks

    SBC: METRON, INCORPORATED            Topic: N19AT017

    Increased availability of graph-structured military data and recent technical advances in neural network design and training methods has led to an opportunity to advance the state of the art while simultaneously establishing and improving the ability:(1) to monitor a platform or force, (2) to predict capabilities and limitations of the force, and (3) to suggest opportunities and vulnerabilities. ...

    STTR Phase II 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government