You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Massively Parallel Scalable Processor for Order of Magnitude Increase in Acceleration of Photonic Simulations

    SBC: VIRTUAL EM INC.            Topic: N23AT008

    Virtual EM proposes develop a massively parallel ASIC for orders of mangnitude speed up of electromagnetic simulations of thin optical lenses made of metamaterials. The ASIC will implement a prorietary algorithm and will deliver scalable run-times that cut the simulation time by more than 1000x compared to today's state-of-the-art simulators.

    STTR Phase I 2023 Department of DefenseNavy
  2. Novel Method for Renewable JP10 Production

    SBC: Technology Holding, LLC            Topic: N23AT015

    Currently, all JP10 is produced from fossil sources. The objective of the proposed project is to develop a scalable synthetic approach to producing JP-10 that meets military specification, MIL-DTL-87107E from non-fossil sustainable energy resources. During phase I, we will define, develop, and perform initial laboratory assessment of the proposed synthetic process to validate the technical feasi ...

    STTR Phase I 2023 Department of DefenseNavy
  3. P21-184 Wisdom: Wing Instruction Spatial Disorientation Outcome Measure

    SBC: SOAR TECHNOLOGY INC            Topic: N22AT005

    Spatial disorientation (SD) continues to be a pervasive fatal event for military aviators and has a wide range of causes and facets. As a result there is no singular measure of SD that can be used to quantify occurrence or opportunity for SD or its causal factors.  To meet this challenge, the SoarTech team proposes to leverage its SD modeling research to develop WISDOM – the Wing Instruction Sp ...

    STTR Phase I 2022 Department of DefenseNavy
  4. Steerable, Directional Antennas to Increase Small Mobile Platform Communication Range

    SBC: IMSAR LLC            Topic: N22AT021

    Traditionally, small platforms that need to communicate with airborne platforms use omnidirectional antennas. This makes it simple to communicate with mobile airborne platforms but reduces the communication link range compared to directional antennas. However, directional antennas require pointing at the airborne platform, which requires a means of moving the antenna to follow the motion of the ai ...

    STTR Phase I 2022 Department of DefenseNavy
  5. ADEPT

    SBC: SOAR TECHNOLOGY INC            Topic: N21BT024

    The Naval Aviation Training Systems and Ranges program office (PMA-205) operates in data-rich information system environments, generating substantial volumes of data throughout its training and operational missions. These datasets can prove extremely useful in identifying performance trends of trainees or operational gaps in aviation assets. Due to sheer magnitude, sifting and analyzing of these d ...

    STTR Phase I 2021 Department of DefenseNavy
  6. Innovative Method for Development of Hemp based Fabric

    SBC: Technology Holding, LLC            Topic: N21AT001

    Hemp-based clothing are excellent for outdoor active wear, due to high strength, UV-protective qualities, mold resistance, and excellent moisture absorption and desorption. While academic research on hemp-based textiles in the US is increasing, it has naturally also become an area of interest to competing countries. Specifically, China is outperforming the US in hemp fiber technological advanceme ...

    STTR Phase I 2021 Department of DefenseNavy
  7. Algorithm Performance Evaluation with Low Sample Size

    SBC: SIGNATURE RESEARCH, INC.            Topic: NGA20C001

    The team of Signature Research, Inc. and Michigan Technological University will develop and demonstrate methods and metrics to evaluate the performance of machine learning-based computer vision algorithms with low numbers of samples of labeled EO imagery. We will use the existing xView panchromatic dataset to demonstrate a proof-of-concept set of tools. If successful, in Phase II, we will extend t ...

    STTR Phase I 2021 Department of DefenseNational Geospatial-Intelligence Agency
  8. Advanced Electromagnetic Modeling with High Geometric Fidelity Using High-Order Curved Elements

    SBC: VIRTUAL EM INC.            Topic: N20BT028

    Virtual EM is proposing a method to achieve orders of magnitude improvement in computational efficiency in full-wave CEM codes by using high-order curved elements. Virtual EM’s own commercial product VirAntenn™ will provide the CEM setting for both developing and implementing the new capability in Phase I and Phase II, respectively. Using multi-wavelength long cells with high-order basis forms ...

    STTR Phase I 2020 Department of DefenseNavy
  9. Reduction of Predictable Spurs in the ADC outputs using AI

    SBC: VIRTUAL EM INC.            Topic: N20AT025

    An AI-based algorithm is being proposed to increase ADC linearity by 10dB. Neural Nets will be investigated in conjunction with models of spurs to accomplish the task.

    STTR Phase I 2020 Department of DefenseNavy
  10. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite. The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loading s ...

    STTR Phase I 2019 Department of DefenseNavy
US Flag An Official Website of the United States Government