Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Ultra Nonlinear Plasmonics (TALON)

    SBC: ZIVA CORPORATION            Topic: SB173002

    Zivas proposed Ultra Nonlinear Plasmonics (TALON) technology addresses the critical DoD need to miniaturize tunable and non-linear photonic, on-chip components and devices. Zivas TALON modulator exploits composite metamaterials both for its waveguide section cladding layers and for the non-linear interaction sections. The former effectively reduces the propagation loss of TALONs ultra-confined pla ...

    SBIR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  2. Complex Networks for Computational Urban Resilience (CONCUR)

    SBC: Perceptronics Solutions, Inc.            Topic: ST17C003

    CONCUR develops a computational framework for assessing and characterizing urban environments stability or fragility in response to volatility and stress, identifying specific weaknesses as well as key tipping points which could lead to rapid systemic failure. CONCUR explicitly models urban environments as emergent complex systems, focusing attention on the critical triggers that could lead to rap ...

    STTR Phase I 2018 Department of DefenseDefense Advanced Research Projects Agency
  3. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  4. Algorithms for Look-down Infrared Target Exploitation

    SBC: Signature Research, Inc.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  5. Variational Object Recognition and Grouping Network

    SBC: Intellisense Systems, Inc.            Topic: NGA181005

    To address the National Geospatial-Intelligence Agency (NGA) need for overhead imagery analysis algorithms that provide uncertaintymeasures for object recognition and aggregation, Intellisense Systems, Inc. (ISS) proposes to develop a new Variational Object Recognition andGrouping Network (VORGNet) system. It is based on the innovation of implementing a Bayesian convolutional neural network (CNN) ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  6. Bayesian Urban Degradation Assessment

    SBC: Intellisense Systems, Inc.            Topic: NGA181004

    To address the NGA need for algorithms that fuse observables from over-flight operations and from ground sources to automatically estimatethe degradation of urban environments due to battle damage or natural disasters, Intellisense Systems, Inc. (ISS) proposes to develop a newBayesian Urban Degradation Assessment (BUDA) software system. It is based on the integration of multiple damage assessment ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  7. Low-Shot Detection in Remote Sensing Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: NGA181010

    The National Geospatial-Intelligence Agency (NGA) ingests and analyzes raw imagery from multiple sources to form actionable intelligenceproducts that can be disseminated across the intelligence community (IC). To effectively meet these demands NGA must continue to improveits automated and semi-automated methods for target detection and classification. Of particular concern is furthering NGA's abil ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. Automated Assessment of Urban Environment Degradation for Disaster Relief andReconstruction

    SBC: TOYON RESEARCH CORPORATION            Topic: NGA181004

    Toyon Research Corp. proposes development of a system that automates disaster assessment based on fusion of overhead and ground-basedimages, video, and other data. In Phase I, we will investigate various possible data sources and the benefits of fusing the data in automatedanalysis. We will select and curate data for processing in a Phase I feasibility study. Damage assessment will be performed in ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  9. Generalized Change Detection to Cue Regions of Interest

    SBC: TOYON RESEARCH CORPORATION            Topic: NGA181006

    Toyon Research Corporation proposes to research and develop algorithms for generalized change detection, by leveraging and exploringexisting and proven effective traditional and deep learning methods, with a unique 3D reconstruction component. The vast majority of themassive amounts of imagery data will have small pixel level differences due to a multitude of unimportant changes: minor misregistra ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  10. Improving Uncertainty Estimation with Neural Graphical Models

    SBC: MAYACHITRA, INC.            Topic: NGA181005

    Building interpretable, composable autonomous systems requires consideration of uncertainties in the decisions and detections theygenerate. Human analysts need accurate absolute measures of probability to determine how to interpret and use the sometimes noisy resultsof machine learning systems; and composable autonomous systems need to be able to propagate uncertainties so that later reasoningsyst ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
US Flag An Official Website of the United States Government