You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Performance Nuclear Materials Additive Manufacturing with Integrated Thermal Processing

    SBC: MCCRINK JOSEPH            Topic: C5640f

    Advanced or additive manufacturing (AM) can enable materials with enhanced performance and facilitate rapid development cycles relative to conventional processes. Hence, AM process improvements can benefit nuclear energy materials which are subject to high thermal flux, intense irradiation fields, high stresses, and be exposed to reactive fluids and gases. This project will develop and demonstrate ...

    STTR Phase I 2023 Department of Energy
  2. Solar-thermal production of synthetic flake graphite from natural gas

    SBC: SolGrapH Inc.            Topic: C5613a

    This project aims to advance and commercially translate technology that uses concentrated solar radiation to convert natural gas directly into high-quality graphite and hydrogen. The solar-driven pyrolysis process involves no catalyst and releases zero CO2 as it captures carbon in the form of high-value graphite in a scalable, roll-to-roll (R2R) process. The pyrolysis process also produces a high- ...

    STTR Phase I 2023 Department of Energy
  3. C56-10b Advanced Microencapsulated Carbon Sorbents (MECS) for Distributed Carbon Capture In Buildings

    SBC: ADC TECHNOLOGY, INC.            Topic: C5610b

    C56-10b-272692It is a broad goal of our country to reduce greenhouse gas emissions by fifty percent by 2030 and achieve net zero by 2050. The built environment plays a critical role in addressing this goal as our building sector accounts for thirty-six percent of national carbon dioxide emissions. Buildings also act as a reservoir of carbon dioxide where it concentrates and results in increased en ...

    STTR Phase I 2023 Department of Energy
  4. Fuel Cell Integrated Power Electronics Module (FCIPEM)

    SBC: ROCKETRUCK INC            Topic: C5618i

    Statement of the problem – The Fuel Cell Integrated Power Electronics Module (FCIPEM) project addresses urgent needs to promote standardization and manufacturing of power electronics for heavy-duty fuel cell applications. A key barrier to developing cost-effective fuel cell-based power systems is the complexity and cost of integrating DC-to-DC converters and DC-to-AC power inverters. Commercial ...

    STTR Phase I 2023 Department of Energy
  5. Advanced Multiport Solar Converter (AMSC)

    SBC: ROCKETRUCK INC            Topic: C5615a

    Statement of the problem – The proposed Advanced Multiport Solar Converter (AMSC) project directly addresses the problem the Department of Energy (DOE) presents in its Topic C56-15(a) – to incorporate wide-bandgap-based devices into a power conversion topology “designed to integrate and optimize distributed energy resources – in particular solar generation – with energy storage capabilit ...

    STTR Phase I 2023 Department of Energy
  6. Bipolar plate manufacturing and reconditioning using next-generation IMPULSE® HiPIMS etching, surface preparation, and pinhole-free deposition of corrosion-resistant, low-ICR coatings

    SBC: STARFIRE INDUSTRIES LLC            Topic: C5618j

    Bipolar plates (BP) are a critical component in proton exchange membrane fuel cells (PEMFC) providing conducting paths for electrons between cells, distribute and provide a barrier for reactant gases, remove waste heat, and provide stack structural integrity. Metallic BP (such as 316SS) have attracted attention for automotive applications due to superior mechanical and physical properties for larg ...

    STTR Phase I 2023 Department of Energy
  7. Large-Area Superconducting Tape Processing Using Novel Inverted Cylindrical Magnetron PVD/Etch/e-CVD Technique

    SBC: STARFIRE INDUSTRIES LLC            Topic: C5630a

    This SBIR project addresses the need for scalable manufacturing techniques for high-quality coatings on Gen2.5 rare-earth barium copper oxide (REBCO) high-temperature superconducting (HTS) tapes needed for high-beta magnetic containment nuclear fusion concepts. Volumetric fusion power density is proportional to B4, so a doubling in current leads to a factor of 16× reduction in size/economics or i ...

    STTR Phase I 2023 Department of Energy
  8. Coatings for SiC LWR fuel claddings using quasi-conformal PVD and e-CVD IMPULSE® HiPIMS coatings direct onto the CMC

    SBC: STARFIRE INDUSTRIES LLC            Topic: C5640v

    This SBIR project addresses the need for scalable manufacturing techniques for high-quality coatings for accident tolerant fuel (ATF) for current nuclear power plants to provide: (1) enhanced safety during design basis and beyond design basis (>1200°C) accident conditions, (2) provide better performance to enable higher linear heat (>7kW/ft, >20% uprate) generation during baseline operation to en ...

    STTR Phase I 2023 Department of Energy
  9. Dielectrophoresis-Enhanced Capture of Metal Cations in Produced Water

    SBC: SCION PLASMA LLC            Topic: C5628b

    Approximately 21 billion barrels of produced water are generated each year in the United States. A lot of produced waters contain significant concentrations of sodium, magnesium, calcium, and other cations. A sufficient treatment will not only harvest the metals, but also provide freshwater for irrigation, municipal demands, mining, livestock, and manufacturing. The currently mature technologies f ...

    STTR Phase I 2023 Department of Energy
  10. Scalable High-density Superconducting Flex Cables and Circuits

    SBC: NIELSON SCIENTIFIC LLC            Topic: C5637c

    There is a growing need for a commercially available high-density superconducting flex cable for a variety of ultra-sensitive, high pixel count instruments/focal plane arrays for the study of space as well as quantum computing and quantum information processing. However, traditional flex circuit manufacturing techniques and tools cannot achieve the high channel density necessary for these customer ...

    STTR Phase I 2023 Department of Energy
US Flag An Official Website of the United States Government