You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Bounding generalization risk for Deep Neural Networks

    SBC: Euler Scientific            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
  2. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: NGA18A001

    The multidisciplinary area of GEOINT is changing and becoming more complex. A major driver of innovation in GEOINT collection and processing is artificial intelligence (AI). AI is being leveraged to help accomplish spatial analysis, change detection, and image or video triage tasks where filtering objects of interest from large volumes of data is critical. NGA is confronting the changing GEOINT l ...

    STTR Phase II 2020 Department of DefenseNational Geospatial-Intelligence Agency
  3. Mixed Elpasolite Scintillators

    SBC: Radiation Monitoring Devices, Inc.            Topic: DTRA18B003

    The goal of this program is to develop the mixed elpasolite scintillators in order to achieve an energy resolution of  (≤ 2.5% (approaching 2%) at 662 keV for crystal sizes of up to 2 inch by 2 inch.  In this project we will investigate compositional changes in selected mixed-elpasolite(s) in order to achieve very high energy resolution.  By incorporating 6Li, neutron detection will also be t ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  4. High Energy Resolution Mixed-Halide Elpasolite Scintillators for Next Generation RIID

    SBC: CapeSym, Inc            Topic: DTRA18B003

    The ability to discriminate between threatening and benign sources depends on the sensitivity, accuracy, and identification speed of the detection equipment. High energy resolution of the radionuclide sensor is necessary to decrease the likelihood of false identification. However, few scintillators achieve better than 3% energy resolution at 662 keV, and none exceed 2.5%. The goal of this effort i ...

    STTR Phase II 2020 Department of DefenseDefense Threat Reduction Agency
  5. Multimode Organic Scintillators for Neutron/Gamma Detection

    SBC: Radiation Monitoring Devices, Inc.            Topic: DTRA19B003

    There is significant interest in multi-functional materials enabling gamma-ray spectroscopy, neutron/gamma pulse shape discrimination (PSD), ultra-fast response, and time-of-flight (TOF) neutron detection. These materials would be used in a variety of mission scenarios for the localization and monitoring of special nuclear materials. Commercial inorganic scintillators offer some of these character ...

    STTR Phase I 2020 Department of DefenseDefense Threat Reduction Agency
  6. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  7. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. Compact Laser Drivers for Photoconductive Semicond

    SBC: SCIENTIFIC APPLICATIONS & RESEARCH ASSOCIATES            Topic: DTRA16A004

    For effective protection against radiated threats, it is important to understand not only the physics of the threats, but also to quantify the effects they have on mission-critical electrical systems. Radiated vulnerability and susceptibility testing requires delivery of high peak power and peak electric fields to distant targets. The most practical solution to simulate such environments on large ...

    STTR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  9. Production of Chemical Reagents for Prompt-Agent-Defeat Weapons

    SBC: NALAS ENGINEERING SERVICES INC            Topic: DTRA14B001

    Nalas Engineering and Johns Hopkins University collaborated in a Phase I STTR program to study reactive mixtures of HI3O8 and nanocomposite fuels previously developed by the Weihs Group. These fuel/oxidizer mixtures are uniquely able to simultaneously produce heat and biocidal iodine gas, a combination designed to destroy biological weapons. The team at Nalas focused on evaluating conditions for p ...

    STTR Phase II 2017 Department of DefenseDefense Threat Reduction Agency
  10. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government