You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Advanced Data Processing, Storage and Visualization Algorithms for Structural Health Monitoring Sensor Networks of Naval Assets

    SBC: ACELLENT TECHNOLOGIES, INC            Topic: N10AT042

    Acellent Technologies Inc. and Prof. F. G. Yuan at North Carolina State University (NCSU) are proposing to develop a Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to determine materials state awareness and its evolution, including identification of precursors, detection of microdamages and flaws near high stress area or in a distributed ...

    STTR Phase I 2010 Department of DefenseNavy
  2. Mitigation of USV Motions via Wave Sensing and Prediction

    SBC: Advanced Scientific Concepts, LLC            Topic: N10AT036

    Advanced Scientific Concepts, Inc. (ASC) has teamed with the Department of Ocean Engineering at The University of Rhode Island to devise a sensor suite and computer algorithm to predict ocean waves to aid autonomous boat navigation in heavy weather. The centerpiece of the sensor suite is a Lidar designed by ASC that is adapted to image the ocean at glancing angles. It’s ability to acquire a 3D s ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Innovative Application of Urban ISR (Intelligence, Surveillance, Reconnaissance) Imagery for High Fidelity Training Devices

    SBC: AECHELON TECHNOLOGY            Topic: N09BT038

    Military operations in urban areas have increasingly become a key capability for our armed forces. The increased risk of use of the unique nature of large urban environments by hostile forces to their tactical advantage, and related civilian casualties, requires updated procedures, comprehensive training, and constantly evolving capabilities. Current training technologies fail to address the signi ...

    STTR Phase I 2010 Department of DefenseNavy
  4. High Speed Polarization Modulation of Microcavity Lasers for Laser Radar (LADAR) Applications

    SBC: Aerius Photonics, LLC.            Topic: ST092003

    A need exists for polarization interrogating and discriminating Ladar systems to detect and discriminate defilade targets. In the proposed effort, Aerius, and our partner at the University of Illinois, will apply photonic crystal technology to extend Aerius’ high power, high wall plug efficiency, Vertical-Cavity Surface-Emitting Laser (VCSEL) results to develop a stable polarization switched VC ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  5. Aerosol Plasmon-Enhanced Laser Desorption Ionization

    SBC: Aerodyne Research, Inc.            Topic: AF09BT34

    Aerodyne Research, Inc. (ARI) and The University of Massachusetts at Amherst will collaborate to develop a novel technique for efficient mass spectrometric analysis of high molecular weight analytes such as proteins and polymers. Laser desorption and ionization with minimal analyte fragmentaton will be carried out on metal nanoparticle substrates in a particle beam sampled by Aerodyne’s proprie ...

    STTR Phase I 2010 Department of DefenseAir Force
  6. Developing a Detailed Chemical Kinetic Model for C-SiC-SiO2-Rubber Composite Materials Exposed to High Temperature, High Pressure, Oxidizing Environme

    SBC: Aerodyne Research, Inc.            Topic: N10AT005

    The objective of this proposed Small Business Technology Transfer (STTR) effort is to develop an experimentally-validated, highly detailed chemical kinetic reference model of surface chemistry for C-SiC-SiO2 rubber composite materials exposed to high temperature, high pressure, oxidizing environments. This reference model will then be reduced into simplified reduced-order models that could be easi ...

    STTR Phase I 2010 Department of DefenseNavy
  7. Uncooled Photomechanical Terahertz Imagers

    SBC: AGILTRON, INC.            Topic: AF09BT33

    Agiltron and the University of Massachusetts Lowell will develop a transformational terahertz (THz) imager based on Agiltron’s established optical readout photomechanical imaging technology. The photomechanical imager contains a MEMS-based focal plane array that transduces THz radiation into a visible signal for capture by a high-performance CCD imager. By leveraging the advances made in the fie ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. LITE Spectrometer for surface bound CBE Materials

    SBC: AGILTRON, INC.            Topic: A09AT022

    A stand-off mid-IR based system offers great promise for the detection of chemical, biological or explosive (CBE) agents. Such a system has yet to be realized due mostly to broad spectral features and interfering substances. In this proposal we will demonstrate the feasibility of a system that collects laser induced thermal emission (LITE) from a substance and identifies it as known CBE agent with ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Instrumentation for Nanoscale Spectroscopy

    SBC: Radiation Monitoring Devices, Inc.            Topic: AF08BT30

    We propose to develop a combination Tip-Enhanced Raman Scattering and Shear-Force Microscopy (TERS-SFM) instrument to study the composition and morphology of nanoparticles, surfaces, and biofilms on any substrate material. The instrument developed during Phase I will rely upon Scanning Tunneling Microscopy combined with TERS (TERS-STM) to test the effects of various excitation wavelengths and tip ...

    STTR Phase I 2010 Department of DefenseAir Force
  10. Analysis and Modeling of Foreign Object Damage (FOD) in Ceramic Matrix Composites (CMCs)

    SBC: Alpha Star Corporation            Topic: N10AT010

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under foreign object Damage (FOD) as well as post FOD. Our team will develop and demonstrate a physics-based model for FOD/post FOD in CMC’s. The model will incorporate physical mechanisms associated with impact for two different CMC systems: a) ma ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government