You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Enabling Technology- Reducing Greenhouse Gas Emissions and Energy Demands in the Meat Production Industry via Scaling Advanced 3D Culture Bioreactors

    SBC: cambridge crops, Inc.            Topic: G

    Food production, and in particular animal-derived meat products, are a major source of green-house gases, compounded by the remarkable inefficiency in biomass conversion (grain to dense muscle tissue in meat), along with growing challenges with food safety, quality and nutrition. To address this growing problem, we propose to exploit the emerging field of cellular agriculture (tissue engineering o ...

    STTR Phase I 2020 Department of EnergyARPA-E
  2. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  3. Algorithms for Look-down Infrared Target Exploitation

    SBC: Signature Research, Inc.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  4. Vertical GaN Substrates

    SBC: Sixpoint Materials, Inc.            Topic: N/A

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase I 2014 Department of EnergyARPA-E
  5. Botnet Analytics Appliance (BNA)

    SBC: MILCORD LLC            Topic: N/A

    As reported by Internet security threat reports, Bot networks are becoming the focal point for cybercriminals. Milcord and the University of Wisconsin, responds to this challenge with our proposal ¿ a ¿Bayesian Activity Monitor for Botnet Defense¿ (BAM-BD). In this proposal, we will research, design, and develop a botnet detection and mitigation tool that automatically classifies botnet behavio ...

    STTR Phase I 2006 Department of Homeland Security
  6. Adaptive camera to display mappings using computer vision

    SBC: POLAR RAIN, INC.            Topic: N/A

    The video surveillance industry is experiencing dramatic change with the move from analog to digital video. Command centers need to have coordinated viewing of multiple camera feeds at one time, and the ability to switch automatically between feeds and display relevant patterns. Conventional security control rooms include a bank of monitors connected through a switch to an array of security camera ...

    STTR Phase I 2006 Department of Homeland Security
US Flag An Official Website of the United States Government