You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Data-Driven Hypersonic Turbulence Modeling Toolset

    SBC: ATA ENGINEERING, INC.            Topic: N22AT016

    Development of hypersonic aircraft and weapon systems has become a critical focus for the Department of Defense to maintain global strike and projection of force capabilities. Despite decades of research, traditional computational fluid dynamics (CFD) methods are either incapable of adequately predicting complex features in hypersonic flows or too expensive to be of practical use for vehicle desig ...

    STTR Phase II 2024 Department of DefenseNavy
  2. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    The goal of this work is to demonstrate and validate a 3D acoustic propagation model for use in constrained environments such as harbors. The 3D model will be used to model system performance for 1) passive sonar, 2) active sonar, and 3) acoustic communications networks. This latter application is of primary importance in this Phase II Extended proposal. To accomplish these goals are sequence of f ...

    STTR Phase II 2023 Department of DefenseNavy
  3. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    The existing HFBL (High-Frequency Bottom Loss) database has been recognized to be unsatisfactory due to its lack of physical underpinning and inability to provide consistent performance across frequency and space. The aim of the project is to replace the HFBL database with a geoacoustic model that leads to a smooth transition to the LFBL (Low-Frequency Bottom Loss) model at 1 kHz. To this end, thi ...

    STTR Phase II 2023 Department of DefenseNavy
  4. Deep Reinforcement Learning for Collaborative Multi-Robot Systems with Low-Latency Wireless Networking

    SBC: TIAMI LLC            Topic: N23BT031

    In this Phase I effort, Tiami, LLC, aims to develop and demonstrate a hardware proof of concept for a collaborative multi-robot system (MRS) that leverages imitative augmented deep reinforcement learning (IADRL) amongst heterogeneous uncrewed systems (robots) to achieve a common task. Collaboration is based on low-latency machine-to-machine wireless links between robots that use both RF and optica ...

    STTR Phase I 2023 Department of DefenseNavy
  5. Ad Hoc Swarm Modulation and Adaptation

    SBC: IOTAI INC            Topic: N23BT031

    Ad Hoc Swarm Modulation and Adaptation focuses on the ability to enable secure cyber communications, data, and distributed AI processing for any robotic swarm in any condition.  The system incorporates a range of multi-robotic system functionality to allow for coordination, cooperation, and reconfigurable methods of robotic teams, flocks, and swarms.  The system further includes methods for swar ...

    STTR Phase I 2023 Department of DefenseNavy
  6. Innovative Method for Development of Hemp based Fabric

    SBC: Technology Holding, LLC            Topic: N21AT001

    Hemp-based clothing are excellent for outdoor active wear, due to high strength, UV-protective qualities, mold resistance, and excellent moisture absorption and desorption. While academic research on hemp-based textiles in the US is increasing, it has naturally also become an area of interest to competing countries. Specifically, China is outperforming the US in hemp fiber technological advancemen ...

    STTR Phase II 2023 Department of DefenseNavy
  7. Mobile Fuel Cell Generator Phase II

    SBC: ROCKETRUCK INC            Topic: C5407f

    The Mobile Fuel Cell Generator (MFCG) addresses needs to increase the reliability of electricity delivery, using equitable, inclusive, sustainable solutions. To address this problem, RockeTruck is developing a portable generator that can be easily transported to deliver clean electric power when grid power is not available. This can include temporary needs, such as utility-mandated “Public Servi ...

    STTR Phase II 2023 Department of Energy
  8. TRISO Fuel Qualification Modeling and Experiment Design

    SBC: Radiant Industries, Incorporated            Topic: C5436b

    As TRISO-coated nuclear fuels are increasingly planned for use in forthcoming commercial reactor designs, qualification strategies for the fuel form are of increasing interest. In the shortterm, it is expected that U.S. based reactor developers will collect irradiation experiment data for their TRISO fuel designs that deviate in any product specifications or extend outside of the operational envel ...

    STTR Phase II 2023 Department of Energy
  9. AI-Based Learning Environment (ABLE) for Undersea Warfare (USW) Training

    SBC: PACIFIC SCIENCE & ENGINEERING GROUP, INC.            Topic: N23AT014

    To compete on the world stage of undersea warfare (USW), the US Navy’s USW systems are frequently updated with advanced capabilities. As a result, modernization trainers need to perform the challenging tasks of updating training material to reflect the new (and obsolete) capabilities. This process requires comparing legacy to updated documentation, identifying changes to system capabilities, and ...

    STTR Phase I 2023 Department of DefenseNavy
  10. AI/ML Aided Aviation Sensors for Cognitive and Decision Optimization

    SBC: KRTKL INC.            Topic: SOCOM23B001

    krtkl (“critical”) will conduct a Phase I Feasibility Study to identify the best approach for reducing aviator cognitive load by optimizing information delivery and decision-making based on a thorough analysis of existing platforms, sensors, data sources, and onboard compute resources. This information will be used to identify Artificial Intelligence and Machine Learning based algorithms for p ...

    STTR Phase I 2023 Department of DefenseSpecial Operations Command
US Flag An Official Website of the United States Government