You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Biomimetic Slope Adaptive Foot-Ankle Prosthesis

    SBC: MOTION CONTROL, INC            Topic: DHP16C007

    Biomimetic Slope Adaptive Foot-Ankle Prosthesis This project will develop an innovative mechanical/hydraulic foot-ankle system that will help lower extremity prosthesis wearers to walk or run in a wider range of environments with close to normal walking biomechanics. The proposed system will have a unique combination of features, all mechanically implemented without electronics or external powe ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  2. Non-invasive Telemetric Assessment of Gut Microbiota Activity in Situ

    SBC: NANOHMICS INC            Topic: DHA17A004

    Physical, mental, and environmental stress, as well as diet and hydration have an impact on overall health, performance, and well-being of humans. These factors all affect the composition and metabolism of the microbiota in the gastrointestinal (GI) tract. The mix of microorganisms in the gut, and their metabolic transformation of food, can alter the overall health and physiology of the host. Me ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Medical Device to Assess the Viability of Tissue Prior to Skin Grafting

    SBC: Spectral Md, Inc.            Topic: DHA17A006

    The primary objective of this proposal is to design and demonstrate the SpectralMD DeepView imaging technology can allow surgeons to quickly and objectively assess the viability of tissue in a burn excision site prior to skin grafting. DeepView uses machine learning algorithms to analyze data acquired by multispectral imaging to generate quantitative prognostic images with a user-friendly output t ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Real-time Modulated Imaging for Assessment of Tissue Viability Prior to Skin Grafts

    SBC: Modulated Imaging Inc.            Topic: DHA17A006

    There is a lack of quantitative tools to accurately map tissue viability in a rapid and quantitative manner so a surgeon can properly excise tissue prior to grafting. Spatial Frequency Domain Imaging (SFDI) is an optical method that has been shown to be a reliable method for physiology assessment - particularly for burn depth. SFDI measures of tissue structure (scattering) and function (hemoglobi ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  6. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: BAYSPEC, INC.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government