You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Miniaturized Optical WDM Transmitter/Transceiver

    SBC: FREEDOM PHOTONICS LLC            Topic: AF18AT010

    The objective of this program is to develop, demonstrate and implement a low reconfigurable, reliable Free Space Optical (FSO) link supporting high bandwidth communications for satellite to satellite or satellite to ground communication. The FSO Transceiver (Transmitter/Receiver) to be implemented will be small Size, Weight, Power and Cost (SWaP-C) such that it can be easily carried by compact spa ...

    STTR Phase I 2018 Department of DefenseAir Force
  2. Detection of Radio Frequency and Magnetic Field Bioeffects in Living Cells

    SBC: QUINC.TECH INC.            Topic: AF18AT001

    The Biomagnetics Micro Dosimetry System (BMDS) program will design, model, and simulate a microdosimetry system that can measure and create a three dimensional map of weak radiofrequency signals in biological organisms. The heart of the BMDS project is the front end called a Quinc, that delivers very sensitive, broad band measurements with high spatial resolution.The Quinc based front end is a val ...

    STTR Phase I 2018 Department of DefenseAir Force
  3. AgileBeam Reconfigurable Free Space Optical Communication System

    SBC: SA PHOTONICS, LLC            Topic: AF18AT010

    Free Space Optical (FSO) communication systems provide many benefits for satellite communications, including high data rates and low Size, Weight and Power (SWaP) compared to traditional RF communication systems.Additionally, FSO systems operate without RF emissions and are inherently immune to RF interference and jamming.The narrow optical beams and small Field-of-View of the optical receivers al ...

    STTR Phase I 2018 Department of DefenseAir Force
  4. STTR Phase I: Protecting Livestock from Airborne Disease Transmission Using Non-thermal Plasma Airstream Disinfection

    SBC: Taza Aya LLC            Topic: CT

    The broader impact/commercial potential of this STTR project stems from the costs to U.S. food producers of outbreaks of animal diseases. Producers of poultry, pork, and other food proteins lose more than $1B each year to infectious diseases, including some that are transmitted through the air. For diseases having an airborne transmission route, protective technologies that are available are few a ...

    STTR Phase I 2018 National Science Foundation
  5. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  6. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  7. STTR Phase I: Advanced Thermophotovoltaic Generators for High-Value Remote Power

    SBC: Marigold Power, Inc.            Topic: PH

    The broader impact / commercial potential of this Small Business Technology Transfer (STTR) Phase I project is to enable electrification of remote oil & gas processes to reduce methane emissions, improve on-site safety, and provide leak-detection and monitoring capabilities. This will be achieved by developing a robust, efficient, small-scale power generator capable of converting on-site fuel to e ...

    STTR Phase I 2018 National Science Foundation
  8. STTR Phase I: Development and Validation of Low-Cost Natural Gas Leak Detection Sensors and Analytics for Drone-Based and Handheld Deployments

    SBC: NIKIRA LABS INC.            Topic: CT

    The broader impact/commercial potential of this project is the rapid, cost-effective detection of natural gas leakage to improve public safety, mitigate global climate change, and decrease product loss. Natural gas is the largest provider of power in the United States. However, more than 80 Tg of leakage occurs at well pads and pipelines during production alone. Such leakage poses a public health ...

    STTR Phase I 2018 National Science Foundation
  9. STTR Phase I: Engineering Alternative Oxidation Activity in A. ferrooxidans For Enhanced Biohydrometallurgy Capabilities

    SBC: Ironic Chemicals LLC            Topic: BT

    The broader impact/commercial potential of this Small Business Technology Transfer (STTR) project will be to develop engineered bacteria with the ability to oxidize the copper mineral chalcopyrite and gold. The majority of copper reserves are in chalcopyrite, which currently requires smelting. The US copper mining industry, due to regulatory restrictions, has a limited smelting capacity forcing US ...

    STTR Phase I 2018 National Science Foundation
  10. Directional Cross-Layer Networking Solution

    SBC: FUSE INTEGRATION, INC.            Topic: AF17BT003

    Currently networks are not taking advantage of the inherent benefits of high multi-beam directional networking. For example, the current MADL implementation simply daisy chains the nodes in the network creating multiple single points of network failure (of course retaining self-healing properties.) The Fuse Directional Cross-Layer Networking Solution (DCLNS) optimized architecture features a robus ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government