You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Botnet Analytics Appliance (BNA)

    SBC: MILCORD LLC            Topic: HSB061008

    Recent reports indicate the activity of more than 6,000 botnet C and C servers. 70 million zombies are responsible for 80 percent of SPAM. Given the exponential growth of the botnet threat, the security of our nation s cyber infrastructure demand automated botnet activity monitoring solutions. In Phase I, Milcord developed a feasibility prototype of a Bayesian Activity Monitor for Botnet Defense. ...

    STTR Phase II 2007 Department of Homeland Security
  2. In-Mask Sensors for Physiological Investigation of Respiratory Exhalation- INSPIRE

    SBC: MAKEL ENGINEERING, INC.            Topic: DHP16C002

    Makel Engineering, Inc. and Sandia National Laboratories propose to demonstrate an advanced multi-modal sensor system suitable for in-situ analysis of exhaled VOCs for pilots, divers and field patients. Our proposed system will combine a micro-gas chromatograph (GC) and miniature ion mobility spectrometer (IMS) for detection of trace amounts of exhaled breath VOCs with miniature solid state sensor ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  3. Mask integrated Volatile Organic Compound (VOC) sensor for real-time warfighter physiological status monitoring in extreme and toxic environments

    SBC: Bayspec, Inc.            Topic: DHP16C002

    BaySpec Inc., in collaboration with Pacific Northwest National Laboratory, proposes to develop an innovative orthogonal sensor systemthat would be able to detect, identify and quantify the inorganic components of breathing mixes, (i.e., nitrogen, oxygen, carbon dioxide, argon, helium, and water vapor), as well as individual detectable VOCs within the exhaled breath in real-time. The Phase I resear ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  4. Multimodal imaging system for burn injury assessment

    SBC: UTOPIACOMPRESSION,CORPORATION            Topic: DHP16C005

    The goal of this STTR effort is to design a portable, multimodal, non-contact imaging system for burn depth diagnosis and tracking of wound healing. UC and Vanderbilt University will build upon our previous efforts demonstrated via porcine model studies to combine results from structural B-mode optical coherence tomography (OCT) images and functional data (pulse speckle imaging- PSI) to classify d ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  5. Multimodal Imaging Device for Real-time Assessment of Airway Tissue Viability and Compliance after Inhalation Injury

    SBC: Physical Sciences Inc.            Topic: DHP16C006

    Inhalation injury is an important cause of morbidity and mortality in both military personnel and the civilian population. Bronchoscopy, currently the gold standard for assessment of inhalation injury, fails to provide submucosal and functional tissue information, both of which are essential for improved prognostic information. Physical Sciences Inc., in collaboration with University of North Caro ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  6. A Portable Multimodality System for in-field Airway Injury Assessment and Compliance Measurement

    SBC: Radiation Monitoring Devices, Inc.            Topic: DHP16C006

    Airway compromise is the third leading cause of potentially preventable death on the battlefield.Current evaluation techniques of the airways associated with smoke inhalation injury are highly subjective and lack the sensitivity required of an accurate diagnostic and assessment tool.The problem of detection is further compounded by the late onset of symptoms that in many cases do not present until ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  7. VOC sensor for Real-Time Physiological Status Monitoring

    SBC: Triton Systems, Inc.            Topic: DHP16C002

    Supplemental oxygen is needed by aircrews and divers. However, oxygen use is limited by the onset of pulmonary oxygen toxicity (PO2T) which can significantly damage pulmonary tissues leading to decreased performance among other adverse effects. A real time sensor that is sensitive and selective with fast response is needed to monitor warfighter breath for trace VOC (volatile organic compound) spe ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  8. Biomimetic Slope Adaptive Foot-Ankle Prosthesis

    SBC: MOTION CONTROL, INC            Topic: DHP16C007

    Biomimetic Slope Adaptive Foot-Ankle Prosthesis This project will develop an innovative mechanical/hydraulic foot-ankle system that will help lower extremity prosthesis wearers to walk or run in a wider range of environments with close to normal walking biomechanics. The proposed system will have a unique combination of features, all mechanically implemented without electronics or external powe ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  9. Wireless Non-Invasive Advanced Control of Microprocessor Prostheses and Orthoses

    SBC: Liberating Technologies, Inc.            Topic: DHA17A005

    There are several current and imminent orthotic and prosthetic (OandP) fitting scenarios that would greatly benefit from the ability to wirelessly collect and transmit physiological information from the user. Both upper- and lower- limb OandP fittings that: 1) use osseointegration, 2) have cable management issues, and 3) could benefit from physiological information from locations proximal to the ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
  10. Non-contact Tissue Viability Assessment (NTVA)

    SBC: Vivonics, Inc.            Topic: DHA17A006

    Selecting the level of debridement sufficient to minimize inflammation and determining the optimal treatment in a timely fashion is critical given the risks of infection and sepsis. Grafting success is dependent on the removal of all necrotic tissue and requires the presence of highly-vascularized granulation tissue. The goal of early debridement for grafting is to remove all the devitalized tis ...

    STTR Phase I 2017 Department of DefenseDefense Health Agency
US Flag An Official Website of the United States Government