You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A Novel Single Sideband Suppressed-Carrier (SSB-SC) Technique for High Dynamic Range Analog Applications

    SBC: IPITEK, Inc.            Topic: N05T008

    Photonic links and networks offer numerous advantages to analog RF systems, and enable advanced performance in Naval aircraft analog RF systems: spurious-free dynamic range (SFDR) exceeding 125 dB/Hz^2/3 with instantaneous bandwidth up to and exceeding 1GHz for operational frequencies from 0.1 to 20 GHz. IPITEK proposes a novel single sideband suppressed-carrier (SSB-SC) technique that offers a ...

    STTR Phase II 2006 Department of DefenseNavy
  2. Adaptive Space-Time Radar Techniques and Waveforms

    SBC: CHIRP CORP.            Topic: N04T007

    The problem is to improve airborne maritime radar detection of small moving targets in clutter, where the clutter varies with time, range, azimuth, sea state, grazing angle, wind speed, and the look direction of the radar relative to the wind direction. A new version of space-time adaptive processing (STAP) is applied to the problem. The new technique provides improved covariance estimation for ...

    STTR Phase II 2006 Department of DefenseNavy
  3. Advanced Flywheel Energy Storage for Pulsed Power Applications

    SBC: CALNETIX            Topic: N04T013

    During the NAVY STTR Phase II Calnetix will further develop its concept of advanced flywheel system proposed in Phase I and will demonstrate the validity of the underlying principles through building and testing a system prototype. This prototype will be a fully functional system capable of supporting up to 2MW of pulse power with the ability of producing 500kW (30 seconds) loads in high-duty-cyc ...

    STTR Phase II 2006 Department of DefenseNavy
  4. High Resolution Eyesafe 3-D LADAR Maritime Imaging Model

    SBC: LIDAR PACIFIC CORP.            Topic: N05T001

    This project will demonstrate 3D sensor capability to identify and track maritime targets, collect target characteristics that enable quick development of identification (ID) templates for ID and tracking of new targets, apply the technology to currently deployed naval passive sensor suites, and extend the technology to airborne platforms.

    STTR Phase II 2006 Department of DefenseNavy
  5. Ruggedized Multifunction Fiber-Optic Transceiver Optical Subassembly

    SBC: ULTRA COMMUNICATIONS, INC.            Topic: N05T005

    This program adds built-in-test (BIT) functionality within multi-Gbps multimode fiber optic transceivers. The end goal is to develop transceivers capable of detecting and isolating fiber faults along the cable plant in a military environment. This Phase II effort will investigate a solution that integrates the BIT functionality into the transceiver IC so that the overall optical subassembly and ...

    STTR Phase II 2006 Department of DefenseNavy
  6. Person Portable JP-8 Fueled Fuel Cell-Power Generator (PJF-Gen)

    SBC: ALTEX TECHNOLOGIES CORPORATION            Topic: N05T016

    Altex Technologies Corporation, a small business, and Pennsylvania State University, a research institution, have teamed up to develop the innovative Person Portable JP-8 Fueled Fuel Cell Power Generator (PJF-Gen). The 500-1000 watts system will be lightweight, the size of a lunch box, will reliably operate on JP-8 and start fast, thereby meeting all Navy requirements. This is achieved by using ...

    STTR Phase II 2006 Department of DefenseNavy
  7. Clutter Removal and Substantially Improved Submarine and Mine Detection Through Affordable

    SBC: BRAINLIKE, INC.            Topic: N05T025

    This proposal offers a System for improving decisive inferences based on Air Deployable Active Receive (ADAR) sonar, in a form that is suitable for deployment on ADAR sonobuoys. Anticipated near-term improvements include better target recognition and reduced operator fatigue, brought about through improved ping data filtering on ADAR aircraft. Anticipated long-term improvements include increased ...

    STTR Phase II 2007 Department of DefenseNavy
  8. Vector Hydrophone Torpedo Defense Array

    SBC: Applied Physical Sciences Corp.            Topic: N05T030

    Under the proposed Phase II STTR effort, Applied Physical Sciences Corp., along with their partners, The Applied Physics Laboratory at the University of Washington, Wilcoxon Research, Inc., and Chesapeake Sciences Corp., proposes to develop an advanced vector hydrophone towed array. This includes a comprehensive acoustic analysis and design, a system interface design that leverages existing tow c ...

    STTR Phase II 2007 Department of DefenseNavy
  9. Acoustic Communications Modem Using MIMO Technology

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N05T022

    The proposed Phase II STTR project is a joint effort between Heat, Light and Sound Research Inc (HLS Research), Arizona State University (ASU), and BAE Systems, titled Acoustic Communications Modem Using Multiple Input, Multiple Output (MIMO) Technology. The Phase I contract (N00014-05-M-0224) was awarded HLS Research and ASU under STTR Topic N05-T022, titled Underwater Acoustic Communications. Th ...

    STTR Phase II 2007 Department of DefenseNavy
  10. Automated RF Measurement Module (ARMM)

    SBC: KAB LABORATORIES INC.            Topic: N05T033

    The Automatic Radio Frequency (RF) Measurement Module (ARMM) supports Specific Emitter Identification/Specific Emitter Verification (SEI/SEV) by providing detailed measurements against collected communication signals. ARMM is an integrated set of digital signal processing (DSP) algorithms that extracts and reports key features against collected signals. A feature analysis capability can then det ...

    STTR Phase II 2007 Department of DefenseNavy
US Flag An Official Website of the United States Government