You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Aerogel Spray Thermal Barrier

    SBC: OCELLUS, INC.            Topic: N05T015

    Hypersonic weapons are being developed to meet the war fighter's requirements of increased weapon effectiveness, decreased time to target, and increased fly out range. Of importance to hypersonic missiles and projectiles, aerothermic heating caused by the friction of air passing the weapon body, is one area of intensive research. At Mach 4, as the hypersonic weapon passes through the lower atmos ...

    STTR Phase II 2007 Department of DefenseNavy
  2. Innovative Multi-scale/Multi-physics based Tool for Predicting Fatigue Crack Initiation and Propagation in Aircraft Structural Components using Phase

    SBC: Coreform LLC            Topic: N16AT003

    The purpose of this Phase II project is to develop computational modeling methods that are able to describe the propagation and interaction of fatigue cracks using the phase-field methodology within the numerical framework of isogeometric analysis (IGA). The resulting computational platform, while focused on fracture and fatigue, will be general, in that any phase-field method can be easily incorp ...

    STTR Phase II 2018 Department of DefenseNavy
  3. Advanced Flywheel Energy Storage for Pulsed Power Applications

    SBC: CALNETIX            Topic: N04T013

    During the NAVY STTR Phase II Calnetix will further develop its concept of advanced flywheel system proposed in Phase I and will demonstrate the validity of the underlying principles through building and testing a system prototype. This prototype will be a fully functional system capable of supporting up to 2MW of pulse power with the ability of producing 500kW (30 seconds) loads in high-duty-cyc ...

    STTR Phase II 2006 Department of DefenseNavy
  4. Vector Hydrophone Torpedo Defense Array

    SBC: Applied Physical Sciences Corp.            Topic: N05T030

    Under the proposed Phase II STTR effort, Applied Physical Sciences Corp., along with their partners, The Applied Physics Laboratory at the University of Washington, Wilcoxon Research, Inc., and Chesapeake Sciences Corp., proposes to develop an advanced vector hydrophone towed array. This includes a comprehensive acoustic analysis and design, a system interface design that leverages existing tow c ...

    STTR Phase II 2007 Department of DefenseNavy
  5. Acoustic Communications Modem Using MIMO Technology

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N05T022

    The proposed Phase II STTR project is a joint effort between Heat, Light and Sound Research Inc (HLS Research), Arizona State University (ASU), and BAE Systems, titled Acoustic Communications Modem Using Multiple Input, Multiple Output (MIMO) Technology. The Phase I contract (N00014-05-M-0224) was awarded HLS Research and ASU under STTR Topic N05-T022, titled Underwater Acoustic Communications. Th ...

    STTR Phase II 2007 Department of DefenseNavy
  6. Automated RF Measurement Module (ARMM)

    SBC: KAB LABORATORIES INC.            Topic: N05T033

    The Automatic Radio Frequency (RF) Measurement Module (ARMM) supports Specific Emitter Identification/Specific Emitter Verification (SEI/SEV) by providing detailed measurements against collected communication signals. ARMM is an integrated set of digital signal processing (DSP) algorithms that extracts and reports key features against collected signals. A feature analysis capability can then det ...

    STTR Phase II 2007 Department of DefenseNavy
  7. A Novel Single Sideband Suppressed-Carrier (SSB-SC) Technique for High Dynamic Range Analog Applications

    SBC: IPITEK, Inc.            Topic: N05T008

    Photonic links and networks offer numerous advantages to analog RF systems, and enable advanced performance in Naval aircraft analog RF systems: spurious-free dynamic range (SFDR) exceeding 125 dB/Hz^2/3 with instantaneous bandwidth up to and exceeding 1GHz for operational frequencies from 0.1 to 20 GHz. IPITEK proposes a novel single sideband suppressed-carrier (SSB-SC) technique that offers a ...

    STTR Phase II 2006 Department of DefenseNavy
  8. Person Portable JP-8 Fueled Fuel Cell-Power Generator (PJF-Gen)

    SBC: ALTEX TECHNOLOGIES CORPORATION            Topic: N05T016

    Altex Technologies Corporation, a small business, and Pennsylvania State University, a research institution, have teamed up to develop the innovative Person Portable JP-8 Fueled Fuel Cell Power Generator (PJF-Gen). The 500-1000 watts system will be lightweight, the size of a lunch box, will reliably operate on JP-8 and start fast, thereby meeting all Navy requirements. This is achieved by using ...

    STTR Phase II 2006 Department of DefenseNavy
  9. Conventional Training Versus Game-Based Training

    SBC: Anacapa Sciences, Inc.            Topic: N06T006

    Game-based training (GBT) has been touted as a promising medium for achieving improved training outcomes and heightened learner motivation, particularly in military training environments. However, there is little empirical research upon which to make informed decisions about when, where, or even if applying particular game elements to training is effective. The primary objective of the Phase II ef ...

    STTR Phase II 2007 Department of DefenseNavy
  10. High Resolution Eyesafe 3-D LADAR Maritime Imaging Model

    SBC: LIDAR PACIFIC CORP.            Topic: N05T001

    This project will demonstrate 3D sensor capability to identify and track maritime targets, collect target characteristics that enable quick development of identification (ID) templates for ID and tracking of new targets, apply the technology to currently deployed naval passive sensor suites, and extend the technology to airborne platforms.

    STTR Phase II 2006 Department of DefenseNavy
US Flag An Official Website of the United States Government