You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Adaptive Optics for Nonlinear Atmospheric Propagation of Laser Pulses

    SBC: Advanced Systems & Technologies Inc            Topic: N17AT024

    Filamentation of ultra-short laser pulse propagation in non-linear media offers significant potentials allowing to address numerous problems in military and commercial sectors. However, practical implementation of this requires an ability to control the USLP at its propagation through inhomogeneous media, like turbulent atmosphere. On the basis of our approach for combating turbulence effects on p ...

    STTR Phase II 2018 Department of DefenseNavy
  2. Improved High-Frequency Bottom Loss Characterization

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N17AT026

    We propose development of an improved bottom database suitable for use in the frequency range of 1-10 kHz. Measured transmission loss (TL) and reverberation level (RL) will be jointly processed in building the database. The influence of the rough sea surface, rough seafloor, as well as subbottom heterogeneity will be accounted for during database generation. The rough sea surface will be character ...

    STTR Phase II 2018 Department of DefenseNavy
  3. 3D Acoustic Model for Geometrically Constrained Environments

    SBC: HEAT, LIGHT, AND SOUND RESEARCH, INC.            Topic: N16AT018

    Systems that operate in constrained environments depend on the acoustics in several ways. Harbor defense systems detect intruders (peopleand/or vessels) by either listening for their noises (passively) or by pinging on them and detecting their echoes (actively). Furthermore, suchsystems may also form the equivalent of an underwater cell phone network using sound to carry the information. The acous ...

    STTR Phase II 2017 Department of DefenseNavy
  4. High Performance Energetic Propellant Ingredient Process Research and Development

    SBC: Nalas Engineering Services Inc            Topic: N16AT021

    CL-20 is the most powerful conventional explosive known, but its high cost has limited its adoption in a range of potential applications. Par of the challenge in making these materials is the complexity of the reaction used to prepare the polycyclic cage. The complexity of this reaction makes it difficult to have insight into the reaction and to improve it. Additionally, several of the intermediat ...

    STTR Phase II 2018 Department of DefenseNavy
  5. Flexible Low Temperature CO2 Capture System, E-CACHYS

    SBC: ENVERGEX LLC            Topic: 1

    This project focuses on the design, integration and optimization of a flexible natural gas combined cycle plant with carbon capture, capable of operating in a highly variable renewable energy environment. Renewable energy sources such as wind and solar power offer unique solutions in our quest to reduce global carbon dioxide (CO2) emissions. However, the increasing penetration of these high variab ...

    STTR Phase II 2020 Department of EnergyARPA-E
  6. Nanocomposite Scandate Tungsten Powder for High Current Density and Long Life Thermionic Cathodes

    SBC: Vacuum Process Engineering, Inc.            Topic: N15AT010

    Vacuum Process Engineering, Inc. (VPE), in collaboration with the University of California, Davis (UC Davis), proposes to develop and quantitatively verify a large scale production process for scandate tungsten nanocomposite powder to be used in high current density and long life cathodes during the Phase II effort. The plan for implementation of the large scale production process at VPE with powd ...

    STTR Phase II 2017 Department of DefenseNavy
  7. Morphing High Temperature Shape Memory Alloy Actuators for Hypersonic Projectiles

    SBC: Mide Technology Corporation            Topic: N05T013

    Shape Memory Alloy (SMA) materials present unique benefits to the control and stabilization of hypersonic projectiles. Midé and the University of Colorado at Boulder is concluded in Phase I that SMA materials offer distinct advantages for the control of hypersonic projectile through the development and analysis of concepts that could achieve the desired flight control characteristics within the ...

    STTR Phase II 2007 Department of DefenseNavy
  8. Quantum Cascade Laser Array with Integrated Wavelength Beam Combining

    SBC: Pendar Technologies, LLC            Topic: N19AT005

    Pendar Technologies proposes to develop the next generation of compact, high power quantum cascade laser (QCL) sources with output power exceeding 10 Watts at a wavelength of 4.6 microns. The proposed subsystem will include a DFB QCL array integrated monolithically with power amplifiers, low-loss passive waveguides resulting from ion implantation and optical elements aimed at realizing on-chip wav ...

    STTR Phase II 2020 Department of DefenseNavy
  9. TOME: Tools for Objective Measurement and Evaluation

    SBC: APTIMA INC            Topic: N16AT002

    The introduction of new systems and technologies is critical for maintaining superiority, yet this brings with it uncertainty regarding the impact on users, teams, and organizations. Rigorous test and evaluation (T&E) practices are essential prior to acquiring and instituting new technologies, particularly to objectively assess the workload imposed on end users. Aptima, Inc. and its partners – S ...

    STTR Phase II 2018 Department of DefenseNavy
  10. Optimization of Fatigue Test Signal Compression Using The Wavelet Transform

    SBC: ATA Engineering, Inc.            Topic: N18BT029

    ATA Engineering has developed a wavelet-based damage squeezing methodology for generating optimally compressed fatigue test signals that produce an equivalent amount of fatigue damage in a predictably reduced amount of time compared to the baseline (uncompressed) signals. Fatigue-critical signal characteristics (e.g., magnitude, phase, frequency, and sequencing relationships) are identified in the ...

    STTR Phase II 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government