You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY21 is not expected to be complete until September, 2022.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Prediction of the Full-Scale Cook-off Response Based on Small-Scale Testing

    SBC: BLAZETECH CORPORATION            Topic: N10AT011

    Reducing the violence of Slow Cook-Off (SCO) and Fast Cook-Off (FCO) to acceptable levels is of great interest to the Insensitive Munitions development. For example, the MIL-STD-2105C SCO test for Insensitive Munitions (IM) compliance requires a slow heating rate (3.3°C/hr) until reaction occurs whereby the ensuing reaction is characterized by degree of violence. A Type V (burn) reaction or bette ...

    STTR Phase II 2018 Department of DefenseNavy
  2. Solid-state, Conformal Laser Enclosure Cooling System

    SBC: NANOHMICS INC            Topic: N18AT001

    The Thermoelectric coolers (TECs) are solid-state devices with no moving parts that provide reliable cooling power compared to traditional cooling systems such as vacuum compressors. However, their relatively high cost and low coefficient of performance (~ 0.5) have relegated them to niche applications such as small-scale portable coolers and, have yet, to be competitive from an efficiency standpo ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Novel Cooling System for Laser Enclosure

    SBC: Photonwares Corporation            Topic: N18AT001

    We propose to utilize a laser 3D printing manufacturing technique to realize an ultra high efficiency micro-channel laser head cooling system with high thermal load capacity in a small volume package. The new approach incorporates key technical innovations that drastically increase the forced water flow interaction surface area and the metal thermal conductivity. The approach enables conformal geo ...

    STTR Phase I 2018 Department of DefenseNavy
  4. Detection Rate Improvements Through Understanding and Modeling Ocean Variability

    SBC: Ocean Acoustical Services and Instrumentation Systems, Inc.            Topic: N18AT002

    The littoral environment is especially demanding on tactical sonar systems, in large part because the spatial and temporal variability imposes sonar system operating conditions of a nature and with a scale heretofore not encountered in the open oceans. Recent Office of Naval Research (ONR) sponsored basic research as well as fleet exercises have shown that littoral environments tactically importan ...

    STTR Phase I 2018 Department of DefenseNavy
  5. Meaning-Aligned Record Synthesis for Training Emerging Capabilities (MARSTEC)

    SBC: SOAR TECHNOLOGY, INC.            Topic: N18AT003

    Operational experts collect recorded data about emerging tactics, techniques, and procedures (TTPs) from sources such as live and virtual training exercises, and numerous test and evaluation simulations. However, instructional designers cannot easily reuse the recorded data to create new training. Without sufficient access to operational experts, expert knowledge is inaccessible and fragmented, of ...

    STTR Phase I 2018 Department of DefenseNavy
  6. TOPMAST: Training Operational Performance via Measure Automation and Scenario-generation Technology

    SBC: Aptima, Inc.            Topic: N18AT003

    As the number of emerging warfare capabilities increases, adaptive training is required in order to keep pace with the corresponding increase in the scale and complexity of training regimes. To enable truly adaptive training, training systems need to both (1) automatically generate training scenarios and (2) automatically assess trainee performance. Lastly, (3) diagnostic visualization technologie ...

    STTR Phase I 2018 Department of DefenseNavy
  7. Next-Generation, Power-Electronics Materials for Naval Aviation Applications

    SBC: Sixpoint Materials, Inc.            Topic: N18AT004

    This STTR project develops an innovative seed fabrication technology to address the fundamental size-quality limitation of gallium nitride (GaN) substratesthe indispensable key component for GaN-based vertical high-power devices. Currently, there is no viable GaN technology to realize large-area and low-defect substrates simultaneously. The technology producing 6" and larger GaN wafers results in ...

    STTR Phase I 2018 Department of DefenseNavy
  8. Innovative additive manufacturing (AM) process for successful production of 7000 series aluminum alloy components using Smart Optical Monitoring Syste

    SBC: Sensigma Llc            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes falls short of producing 7000 series Al alloys successfully due to lack of porosity, thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and other m ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Concrete Materials Characterization (COMAC)

    SBC: Luminit LLC            Topic: N18AT006

    To meet the U.S. Navy, specifically PMA-201, need for nondestructive evaluation (NDE) of concrete, including evaluating its strength, material properties, and damage localization, Luminit, LLC, and Southern Illinois University (SIU) propose to develop a novel Concrete Materials Characterization (COMAC) system, combining several methods of concrete characterization into a single sensor/software com ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Non-Destructive Concrete Interrogator and Strength of Materials Correlator

    SBC: Texas Research Institute, Austin, Inc.            Topic: N18AT006

    Phase I will determine the feasibility that one-sided measurements of low power, noninvasive, nondestructive microwave energy can be used to determine the strength and condition of concrete along with relevant spatial and statistical information. We will make different types of concrete with variations in constituent ratios as test samples; use ASTM tests to destructively determine true strength; ...

    STTR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government