You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  2. Volume Digital Holographic Wavefront Sensor

    SBC: NUTRONICS, INC.            Topic: AF18AT006

    Nutronics, Inc. and Montana State University propose to develop and evaluate computational methods for a Volume Digital Holographic Wavefront Sensor (VDHWFS).VDHWFS based imaging offers the potential to provide the equivalent of wide field of view adaptive optics (AO) compensated imaging, but without the added complexity of AO components and hardware.Recent result for coherent imaging developed by ...

    STTR Phase I 2018 Department of DefenseAir Force
  3. Non-Linear Adaptive Optics (NLAO)

    SBC: NUTRONICS, INC.            Topic: AF18AT008

    Nutronics, Inc. and Montana State University propose to develop an approach for non-linear control of hysteresis and incorporate (if necessary) integrated Multi-Input-Multi-Output real time control with this capability.Our control systems already include a proven high speed real time control approach to determine the optimal set of actuator commands that satisfy inter-actuator stroke limitations.O ...

    STTR Phase I 2018 Department of DefenseAir Force
  4. Stable High Bandwidth AO Control with physical DM constraints

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT008

    Adaptive optics (AO) system performance is hindered by the mechanical limits of the deformable mirror (DM), namely stroke limits, interactuator stroke limits, and mechanical resonance.The nature of the multi-in multi-out (MIMO) control system does not lend itself well to notch filters to combat the mechanical resonances, and the stroke limits introduce non-linearities to the system.The traditional ...

    STTR Phase I 2018 Department of DefenseAir Force
  5. HASLOC: Hierarchical And-Or Structures forLocalization and Object Recognition

    SBC: Intelligent Automation, Inc.            Topic: AF18AT014

    Target detection and recognition is a challenging problem because of changes in appearance, viewing direction, occlusion and other covariates. Systems that can accurately and efficiently detect and track objects can provide several benefits in surveillance, monitoring and other applications. As part of this effort, we propose to develop a robust learning-based approach to detect, track and recogni ...

    STTR Phase I 2018 Department of DefenseAir Force
  6. Radio Frequency (RF) Filter Tuning Element

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: AF18AT015

    To meet the requirements of AF18A-T015 solicitation, MaXentric and University of California San Diego are proposing the development of a low loss, high linearity tunable bank of varactors. The tunable capacitor is targeting a compact integrated design, capable of a tuning range up to 10:1, with a minimum Q of 75, and handling up to 20W CW. During phase I, the team will (1) optimize the losses and ...

    STTR Phase I 2018 Department of DefenseAir Force
  7. System for Nighttime and Low-Light Face Recognition

    SBC: MUKH Technologies LLC            Topic: SOCOM18A001

    Recognizing faces in low-light and nighttime conditions is a challenging problem due to the noisy and poor quality nature of the images.Thermal imaging is often used to obtain facial biometric in such conditions. Thermal face images, while having a strong signature at nighttime, are not typically maintained in biometric-enabled watch lists and so must be compared with visible-light face images to ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  8. Mid-IR Meta-Lenses

    SBC: STRUCTURED MATERIALS INDUSTRIES, INC.            Topic: AF18AT005

    In Phase I of this STTR program, Structured Materials Industries, Inc. (SMI) and Sandia National Laboratories (SNL) will demonstrated high-efficiency mid-IR metasurface flat optics. We will use Metalorganic Chemical Vapor Deposition (MOCVD) to grow Lead Telluride (PbTe) on Barium Fluoride (BaF2) substrates to construct flat meta-lenses equivalent of cylindrical and aspheric lenses for mid-IR image ...

    STTR Phase I 2018 Department of DefenseAir Force
  9. Volumetric Wavefront Sensing for the Characterization of Distributed-Volume Aberrations

    SBC: Guidestar Optical Systems, Inc.            Topic: AF18AT006

    Modern Directed Energy (DE) missions require target engagements at low elevation angles and long ranges.These engagement geometries require propagation through distributed-volume turbulence. To correct for distributed-volume turbulence effects, an estimation of the turbulence along the propagation path is required. Correcting for these image aberrations will improve the quality of the target image ...

    STTR Phase I 2018 Department of DefenseAir Force
  10. Complex Object Reflectance Characterization System (CORCS)

    SBC: NUTRONICS, INC.            Topic: AF18AT007

    Nutronics, Inc. and Montana State University propose to develop a method for characterization of the full Mueller matrix for reflective scattering from a test object. The Complex Object Reflectance Characterization System (CORCS) will initially be designed for laboratory use and characterization of test objects by active imaging to measure both the Mueller Matrix and the target depth associated wi ...

    STTR Phase I 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government