You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY22 is not expected to be complete until September, 2023.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Secure Environment for Cyber Resiliency Evaluation of Missile Defense Systems (SEC-MDS)

    SBC: Scalable Network Technologies, Inc.            Topic: MDA19T004

    Current methods of validating the cyber resiliency of missile defense systems require testing of actual systems, which removes them from operation and subjects them to potentially damaging effects. Cyber ranges can be used as an alternative, but they are limited in scale, costly, time-consuming to configure and have limited capability to model wireless tactical networks and their inherent vulnerab ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  2. Bounding generalization risk for Deep Neural Networks

    SBC: Euler Scientific            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
  3. High Temperature Fracture Mechanics

    SBC: SYMPLECTIC ENGINEERING CORPORATION            Topic: MDA19T002

    The objective of this project is to develop a capability to model fracture of materials used in hypersonic vehicles that results from hypervelocity impact while exposed to extreme temperatures. Symplectic Engineering’s approach addresses this challenge at two levels. At the computational level, a Relaxed Extended Finite Element approach is pursued to represent (possibly intersecting) fractures l ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  4. High Temperature Fracture Mechanics

    SBC: Karagozian & Case, Inc.            Topic: MDA19T002

    This STTR research study aims to enhance and apply thermo-mechanically coupled computational models for high-temperature fracture. This topic is particularly challenging in that hypersonic flight in the atmosphere generates extreme conditions over a vehicle that can affect the strength and performance the vehicle materials, both in-flight conditions as well as for cases where the vehicle encounter ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  5. High-Performance Monte Carlo Modeling System for Real-time Fire Control Schedulers

    SBC: OPTIMAL SYNTHESIS INC.            Topic: MDA19T009

    The proposed work will develop a massively parallelized architecture for Monte Carlo simulation of real-time fire control schedulers. The parallelized architecture will utilize the recent developments in multiprocessing/multithreading technology based on graphical processing units. The system will be designed to perform in real-time assuming non-collocated sensors observing the threats and then co ...

    STTR Phase I 2020 Department of DefenseMissile Defense Agency
  6. Human Performance Optimization: Ketone Esters for Optimization of Operator Performance in Hypoxia

    SBC: HVMN Inc.            Topic: SOCOM17C001

    In the setting of altitude-induced hypoxia, operator cognitive capacity degrades and can compromise both individual and team performance. This degradation is linked to falling brain energy (ATP) levels and an increased reliance on anaerobic energy production from glucose. Ketone bodies are the evolutionary alternative substrate to glucose for brain metabolic requirements; previous studies have sho ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  7. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. Algorithms for Look-down Infrared Target Exploitation

    SBC: Signature Research, Inc.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  9. Novel Structure-Preserving Algorithms for Accurate Rocket Trajectory Propagation

    SBC: OPTIMAL SYNTHESIS INC.            Topic: MDA17T002

    The Department of Defense uses large-scale high-resolution federated simulations to propagate rocket vehicle trajectories. Runge-Kutta methods have served as a de-facto standard while conducting such simulations. However, there are several challenges while using Runge-Kutta methods for this task. Firstly, there should be exact time-step matching between federates, otherwise the states have to be i ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  10. SmallSat Stirling Cryocooler for Missile Defense (SSC-X)

    SBC: Wecoso, LLC            Topic: MDA17T003

    West Coast Solutions (WCS), in collaboration with the Georgia Institute of Technology and Creare LLC, proposes an adaptation of our SmallSat Stirling Cryocooler (SSC) technology in response to STTR Topic MDA17-T003: High-Efficiency, Low-Volume, Space-Qualified Cryogenic-Coolers. In Phase 1 we will scale up a design currently in development for NASA to meet the Missile Defense Agency (MDA) topic re ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government