You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Vertical GaN Substrates

    SBC: SIXPOINT MATERIALS, INC.            Topic: N/A

    SixPoint Materials will create low-cost, high-quality vertical gallium nitride (GaN) substrates using a multi-phase production approach that employs both hydride vapor phase epitaxy (HVPE) technology and ammonothermal growth techniques to lower costs and maintain crystal quality. Substrates are thin wafers of semiconducting material needed for power devices. In its two-phase project, SixPoint Mate ...

    STTR Phase I 2014 Department of EnergyARPA-E
  2. Machine-Learning Based Sensing and Waveform Adaptation for SDRs Operating in Congested and Contested Environment

    SBC: Space Micro Inc.            Topic: A19CT005

    Unprecedented growth in demand of wireless devices has caused overcrowding of the spectrum. Modern Software Defined Radios (SDRs) have to provide satisfactory services while transmitting/receiving in congested and contested environment. In order to do that, complex learning algorithms have to be paired with capable, flexible and wideband hardware.Space Micro and its partner research institution, t ...

    STTR Phase I 2020 Department of DefenseArmy
  3. Freeform Optics for Small Arms Fire Control

    SBC: SA PHOTONICS, LLC            Topic: A19BT001

    Traditional spherical optics implemented on a common optical axis are the foundation of today’s fielded gunsights for small arms fire control. SA Photonics has helped pioneer the application of precision injection molded freeform optical surfaces in head/helmet mounted display (HMD) systems for augmented reality (AR), virtual reality (VR) and low light level sensor applications. SA Photonics tea ...

    STTR Phase I 2020 Department of DefenseArmy
  4. Automating U-spline fluid-structure model development for mobility applications

    SBC: Coreform LLC            Topic: A19BT006

    Dr. Thomas J.R. Hughes, senior advisor at Coreform, first introduced isogeometric analysis (IGA) in 2005. In the years since, it has been shown that smooth splines, the basic building blocks of IGA, allow for the use of relatively coarse meshes for accurate analysis in both finite element analysis (FEA) and computational fluid dynamics (CFD). Research results also show that IGA delivers improved a ...

    STTR Phase I 2020 Department of DefenseArmy
  5. Passive, Non-powered Re-chargeable Heat Storage Systems for Cold Climate Operations

    SBC: 2W ITech LLC            Topic: A19BT014

    Next-level improvements in thermal extremity protection for the current Extended Cold Weather Clothing System (ECWCS) are needed for soldiers in order to improve mobility and achieve peak performance in bitterly cold Arctic climes. In this STTR program, 2W iTech LLC proposes to develop phase change material (PCM) based thermal regulating films, in collaboration with the Multiscale Thermal Science ...

    STTR Phase I 2020 Department of DefenseArmy
  6. High Performance, Non-flammable Lithium Battery

    SBC: AMERICAN LITHIUM ENERGY CORP.            Topic: A19BT016

    The ALE-PNNL Team is developing a nonflammable high capacity and high power 18650 cell using nonflammable electrolyte for military electric vehicle and energy storage applications. The 18650 cells will be nonflammable even under extreme temperature conditions and after metal penetration, even including bullet penetration.

    STTR Phase I 2020 Department of DefenseArmy
  7. Laser Activated Plasma (LAPLAS) for Standoff Electronic Denial

    SBC: ADVANCED SYSTEMS & TECHNOLOGIES INC            Topic: A19CT007

    Robotic systems in general, and Unmanned Arial Vehicles (UAVs) in particular, pose a threat for both military and civilians when in the wrong hands. The triad of Kinetic, High-Power Microwave and Laser weapon systems currently used or considered for Counter-UAV (C-UAV) operation though effective in disrupting their performance, might be hazardous when used in a populated area. In this Phase I prog ...

    STTR Phase I 2020 Department of DefenseArmy
  8. ConnextEdge: A Hierarchical Framework for Resilient Edge Analytics

    SBC: REAL-TIME INNOVATIONS, INC.            Topic: A19CT004

    The US Army aims to integrate multi-modal sensor data streams and advanced AI analytics at the tactical network edge in support of its vision for a future Internet of Battlefield Things. To maintain situational awareness within mission-acceptable levels despite dynamic conditions and infrastructure disruptions, we propose the ConnextEdge framework for resource-aware location-agnostic adaptive AI p ...

    STTR Phase I 2020 Department of DefenseArmy
  9. High Purity H2 from Sunlight via a Unique Combination of Novel Photodiodes and Membranes

    SBC: PRECISION COMBUSTION, INC.            Topic: A19BT015

    Precision Combustion, Inc. (PCI) together with University of Michigan (UMich) proposes a system to use solar energy to convert water to ultra-high purity compressed hydrogen suitable for PEM fuel cells. We will combine UMich’s high efficiency photocatalytic water splitting approach with PCI’s integrated hydrogen separator/compressor. The proposed effort will confirm the avoidance of external e ...

    STTR Phase I 2020 Department of DefenseArmy
  10. Mm-Wave Phased-Array Antennas with Ultra-Low-Latency Beam-Forming and Spatial-Filtering for Highly Dynamic and Mobile Satellite Communications

    SBC: Alcatera Inc.            Topic: A19CT006

    This project aims to reduce the size and cost of current AEHF front-end by the integration of a compact beam-steering antenna array. The integration consists of novel antenna design, novel steering technique, and a scalable capable architecture.

    STTR Phase I 2020 Department of DefenseArmy
US Flag An Official Website of the United States Government