You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Adaptable Cyber Defense for Autonomous Air Operations

    SBC: INFERLINK CORP            Topic: AF19CT003

    Cyber defense is difficult, but presents a particularly thorny problem for legacy systems, including legacy embedded systems, where in many such cases source code may not even be available. In this project, we proposed to investigate and extend a pattern-based approach recently developed by USC-ISI for analyzing and retrofitting binary code to protect against potential attacks. In this project, we ...

    STTR Phase I 2020 Department of DefenseAir Force
  2. Adaptive Photonic Integrated Circuit (PIC)-based Spectral Processor for Dynamic Fiber-Optic Sensing

    SBC: INTELLIGENT FIBER OPTIC SYSTEMS CORP            Topic: AF20ATCSO1

    IFOS and STTR Partner Northwestern University propose to investigate the commercial viability of rapid transition of enhanced high-speed fiber-optic sensing systems. Fiber Bragg Grating (FBG) sensing based on Two Wave Mixing Interferometry (TWMI) in Photo-Refractive Crystals (PRC) has already been commercialized for dual-use applications. In this project, IFOS will leverage its experience as leadi ...

    STTR Phase I 2020 Department of DefenseAir Force
  3. Advanced Electromagnetic Modeling and Analysis Tools for Complex Aircraft Structures and Systems

    SBC: HYPERCOMP INC            Topic: N20BT028

    Under this STTR solicitation N20B-T028, the goal is to build on the strengths of HyPerComp’s development in the HDphysics suite of tools to meet NAVAIR’s requirements in solving large-scale problems in electromagnetics.  One area that will receive a major attention in this effort is the development of high order curved meshes for arbitrary geometries with small- and large-scale features that ...

    STTR Phase I 2020 Department of DefenseNavy
  4. Advanced Electromagnetic Modeling with High Geometric Fidelity Using High-Order Curved Elements

    SBC: VIRTUAL EM INC.            Topic: N20BT028

    Virtual EM is proposing a method to achieve orders of magnitude improvement in computational efficiency in full-wave CEM codes by using high-order curved elements. Virtual EM’s own commercial product VirAntenn™ will provide the CEM setting for both developing and implementing the new capability in Phase I and Phase II, respectively. Using multi-wavelength long cells with high-order basis forms ...

    STTR Phase I 2020 Department of DefenseNavy
  5. Advanced Photonic Integrated Circuits for Quantum Key Distribution Transmitters

    SBC: FREEDOM PHOTONICS LLC            Topic: AF20AT004

    Quantum technology advances are currently at the forefront of U.S. military interest. In particular, recent developments in quantum communications have successfully demonstrated quantum key distribution (QKD) in space by the Chinese Micius satellite for quantum studies and quantum communication. Freedom Photonics is exploring photonic integrated circuit (PIC) solutions for time-bin QKD satellite a ...

    STTR Phase I 2020 Department of DefenseAir Force
  6. A High-Level Operator Abstraction for GPU Graph Analytics

    SBC: Royal Caliber            Topic: ST13B004

    We propose to build a framework around an operator formulation to enable rapid development of massively parallel solutions to large graph problems. Graph algorithms are expressed by a small number of operators that are applied to components of the graph.

    STTR Phase I 2014 Department of DefenseDefense Advanced Research Projects Agency
  7. A High-Speed Digital Holocamera for the 3-D Analysis of Flow Interaction with High Speed Flows

    SBC: METROLASER, INCORPORATED            Topic: N20AT020

    In hypersonic flight, airborne particles such as water or ice can penetrate and alter the bow shock and flow field, enhance erosion mechanisms and alter aerodynamics. Particles break up as they pass through the shock wave, impact the surface, erode and increase surface roughness, increase turbulence and heat transfer, and augment heating that can destroy heat shields prematurely. Many tests and th ...

    STTR Phase I 2020 Department of DefenseNavy
  8. Air-Sea Thermal Energy Harvesting on an Arctic Buoy

    SBC: SEATREC, INC.            Topic: N20AT023

    Seatrec will collaborate with a team from the Woods Hole Oceanographic Institution to demonstrate the technical feasibility and commercial applicability of a novel energy harvesting system that converts thermal energy from high-latitude air-sea temperature differences into electricity.  This capability will extend the endurance and capability of observing system elements, reduce battery waste, a ...

    STTR Phase I 2020 Department of DefenseNavy
  9. Analog Optical Link using Novel Record Performance Laser, Modulator and Photodiode Technology

    SBC: FREEDOM PHOTONICS LLC            Topic: N20AT012

    In this program, Freedom Photonics and its research partner institution will demonstrate an analog optical link using novel record performance laser, modulator and photodiode technology. Preliminary designs for a miniature, deployable implementation will be conducted as well in Phase I.

    STTR Phase I 2020 Department of DefenseNavy
  10. Analysis and Modeling of Erosion in Gas-Turbine Grade Ceramic Matrix Composites (CMCs)

    SBC: ALPHASTAR TECHNOLOGY SOLUTIONS LLC            Topic: N19BT033

    A significant barrier to the insertion of ceramic matrix composite (CMC) materials into advanced aircraft engines is their inherent lack of toughness under erosion and post erosion. Our team will develop and demonstrate a physics-based model for erosion/post erosion of CMC’s at room and elevated temperatures (RT/ET). The ICME (Integrated Computational Material Engineering) Physics based Multi Sc ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government