You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Enabling Technology- Reducing Greenhouse Gas Emissions and Energy Demands in the Meat Production Industry via Scaling Advanced 3D Culture Bioreactors

    SBC: Cambridge Crops, Inc.            Topic: G

    Food production, and in particular animal-derived meat products, are a major source of green-house gases, compounded by the remarkable inefficiency in biomass conversion (grain to dense muscle tissue in meat), along with growing challenges with food safety, quality and nutrition. To address this growing problem, we propose to exploit the emerging field of cellular agriculture (tissue engineering o ...

    STTR Phase II 2020 Department of EnergyARPA-E
  2. Flexible Low Temperature CO2 Capture System, E-CACHYS

    SBC: ENVERGEX LLC            Topic: 1

    This project focuses on the design, integration and optimization of a flexible natural gas combined cycle plant with carbon capture, capable of operating in a highly variable renewable energy environment. Renewable energy sources such as wind and solar power offer unique solutions in our quest to reduce global carbon dioxide (CO2) emissions. However, the increasing penetration of these high variab ...

    STTR Phase II 2020 Department of EnergyARPA-E
  3. Quantum Cascade Laser Array with Integrated Wavelength Beam Combining

    SBC: PENDAR TECHNOLOGIES LLC            Topic: N19AT005

    Pendar Technologies proposes to develop the next generation of compact, high power quantum cascade laser (QCL) sources with output power exceeding 10 Watts at a wavelength of 4.6 microns. The proposed subsystem will include a DFB QCL array integrated monolithically with power amplifiers, low-loss passive waveguides resulting from ion implantation and optical elements aimed at realizing on-chip wav ...

    STTR Phase II 2020 Department of DefenseNavy
  4. Comprehensive Surf Zone Modeling Tool

    SBC: Arete Associates            Topic: N19AT010

    The objective of this project is to advance the capabilities of the Coastal Battlefield Reconnaissance and Analysis (COBRA) system by creating a Surf Zone Modelling Tool (SZT) that can create realistic synthetic imagery of the surf zone (SZ). Through the use of this synthetic imagery the COBRA Program will be enabled to inform concept of operations (CONOPS) in unfamiliar environments as well as mo ...

    STTR Phase II 2020 Department of DefenseNavy
  5. Innovations in Designing Damage Tolerant Rotorcraft Components by Interface Tailoring

    SBC: HARP ENGINEERING LLC            Topic: N19AT003

    The performance of a composite material is heavily influenced by the strength and toughness of the interlaminar region, which is the resin rich area between the plies of a fiber reinforced composite.  The interlaminar region generally provides a direct path for crack propagation since no continuous reinforcement is present and is often the cause of failure in materials subjected to cyclic loadin ...

    STTR Phase II 2020 Department of DefenseNavy
  6. A Wavelength-Scalable Dual-Stage Photonic Integrated Circuit Spectrometer

    SBC: PHYSICAL SCIENCES INC.            Topic: N19AT023

    In this program, Physical Sciences Inc. (PSI) will team with Professor Ali Adibi’s group at the Georgia Institute of Technology to develop a photonic integrated circuit (PIC) spectrometer that can simultaneously achieve high-resolution over wide-bandwidths using a scalable and foundry-ready approach. While a PIC-based spectrometer is a key component for on-chip Raman, fluorescence, and absorptio ...

    STTR Phase II 2020 Department of DefenseNavy
  7. Conjugate heat transfer for LES of gas turbine engines

    SBC: CASCADE TECHNOLOGIES INC            Topic: N19BT027

    Current design tools for gas turbine engines invoke a variety of simplifying assumptions to estimate heat transfer to solid/metal engine components (e.g., isothermal boundary conditions). These approximations are often not valid, result in inaccurate predictions of heat transfer, and ultimately compromise the thermal integrity of propulsion and power systems. Wall-modeled large eddy simulation (WM ...

    STTR Phase II 2020 Department of DefenseNavy
  8. Joint User-Centered Planning Artificial Intelligence Tools Effective Mission Reasoning (JUPITER)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N19BT029

    Effective mission planning is critical for military strategy and execution. This process is complex as human operators must consider many variables (e.g., resource limitations, threats, risks) when formulating a plan to accomplish mission goals. Although powerful tools, such as the Navy’s Joint Mission Planning System (JMPS), provide advanced functionality, mission planning remains a hybrid acti ...

    STTR Phase II 2020 Department of DefenseNavy
  9. Innovative Processing Techniques for Additive Manufacture of 7000 Series Aluminum Alloy Components

    SBC: SENSIGMA LLC            Topic: N18AT005

    Naval aircraft components are routinely made of 7000 series aluminum alloys due to their strength, weight and fatigue properties. Present Additive Manufacturing (AM) processes fall short of producing 7000 series Al alloys successfully due to lack of porosity, and thermal and composition control. In-situ methods implemented to date largely only yield information about the component surface and othe ...

    STTR Phase II 2020 Department of DefenseNavy
  10. Interlaminar Reinforcement of Composites via Tailored CNT Nanomorphologies

    SBC: METIS DESIGN CORP            Topic: N19AT003

    The Phase I effort of this STTR aimed to reinforce ply-drop laminates. When laminates taper from a thicker to thinner cross section, the termination of plies locally create resin pockets that can reduce the life of a part due to the lower strength of the resin compared to the fibers, local stress concentrations, and the propensity for voids in these resin rich areas. Thus, Metis Design Corporation ...

    STTR Phase II 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government