You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Development of Precision Alignment Techniques for Millimeter Wave Sources

    SBC: DYMENSO LLC            Topic: N20AT013

    High power generation at millimeter wave (mm-wave) frequencies is expensive and the concurrent need for wide bandwidths at these frequencies creates an extremely challenging problem. Currently the most stringent requirements for mm-wave power and bandwidth can only be practically met by vacuum electronics (VE) technology. At present, vacuum amplifiers with the required performance are prohibitivel ...

    STTR Phase I 2020 Department of DefenseNavy
  2. Back Channel for LVC Training

    SBC: TOYON RESEARCH CORPORATION            Topic: N20AT024

    To support Navy Live, Virtual, and Constructive (LVC) training for surface fleets during periods of long transit, the Navy would like to consider alternative communication paths that can link shore based trainers and simulation capabilities with trainers and training systems afloat. To support full spectrum training during the training events, there is a desire to selectively turn off communicatio ...

    STTR Phase I 2020 Department of DefenseNavy
  3. Advanced Electromagnetic Modeling and Analysis Tools for Complex Aircraft Structures and Systems

    SBC: HYPERCOMP INC            Topic: N20BT028

    Under this STTR solicitation N20B-T028, the goal is to build on the strengths of HyPerComp’s development in the HDphysics suite of tools to meet NAVAIR’s requirements in solving large-scale problems in electromagnetics.  One area that will receive a major attention in this effort is the development of high order curved meshes for arbitrary geometries with small- and large-scale features that ...

    STTR Phase I 2020 Department of DefenseNavy
  4. Optimized Energy-Attenuating Seat Design for Ground Vehicles

    SBC: CORVID TECHNOLOGIES, LLC            Topic: N20AT001

    Corvid Technologies, LLC (Corvid) and the University of Virginia Center for Applied Biomechanics (UVA-CAB) propose to develop finite element models of mounted warfighters to evaluate injury risk in underbody blast (UBB) loading events and utilize these models to improve the performance of energy-attenuating (EA) seat safety. The proposed approach will utilize a high-fidelity computational physics- ...

    STTR Phase I 2020 Department of DefenseNavy
  5. Machine Learning for Simulation Environment

    SBC: Arete Associates            Topic: N20AT014

    Areté and the Machine Learning for Artificial Intelligence (MLAI) Lab at the University of Arizona (UofA) will develop an interactive scenario building tool capable of generating realistic synthetic 360° videos in real-time for use in training simulators for periscope operators .  We refer to this solution as RealSynth360.  This novel capability will be created by combining the latest advances ...

    STTR Phase I 2020 Department of DefenseNavy
  6. Frequency and Phase Locking of Magnetrons Using Varactor Diodes

    SBC: CALABAZAS CREEK RESEARCH, INC.            Topic: N20AT015

    Magnetrons are compact, inexpensive, and highly efficient sources of RF power used in many industrial and commercial applications. For most of these applications, the requirement is for RF power without regard to precise frequency or phase control, and noise riding on the RF signal is not important. For many accelerator, defense, and communications applications, however, these characteristics prev ...

    STTR Phase I 2020 Department of DefenseNavy
  7. Quantum Emulation Co-processor Circuit Card

    SBC: FASTER LOGIC, LLC            Topic: N20AT016

    Whereas quantum computers stand to drastically transform computation for a number of existing and future problems, its realization in the near term produces certain challenges.  Simulation and Emulation techniques make it possible to consider the advantages of quantum computation in real-world applications in cryptography, machine learning, signal processing, and cybersecurity.  They also open t ...

    STTR Phase I 2020 Department of DefenseNavy
  8. Air-Sea Thermal Energy Harvesting on an Arctic Buoy

    SBC: SEATREC, INC.            Topic: N20AT023

    Seatrec will collaborate with a team from the Woods Hole Oceanographic Institution to demonstrate the technical feasibility and commercial applicability of a novel energy harvesting system that converts thermal energy from high-latitude air-sea temperature differences into electricity.  This capability will extend the endurance and capability of observing system elements, reduce battery waste, a ...

    STTR Phase I 2020 Department of DefenseNavy
  9. PARTEL: Periscope video Analysis using Reinforcement and TransfEr Learning

    SBC: MAYACHITRA, INC.            Topic: N20AT007

    We propose a suite of video processing algorithms utilizing the machine learning (ML) techniques of artificial intelligence (AI) reinforcement learning, deep learning, and transfer learning to process submarine imagery obtained by means of periscope cameras. Machine learning (ML) can help in addressing the challenge of human failure of assessing the data of periscope imagery. Though pre-tuned blac ...

    STTR Phase I 2020 Department of DefenseNavy
  10. High Efficiency Propeller for Small Unmanned X Systems using Advanced Composite Materials

    SBC: CATTO PROPELLERS            Topic: N20AT006

    In the proposed STTR study, Catto Propellers, Inc. (Catto) and the University of North Dakota (UND) will create an efficient new propeller design utilizing advanced composite materials for use on small unmanned x systems.  During Phase I, a comprehensive study will be conducted to develop a new propeller design in order to increase propeller efficiency, reduce aerodynamic noise and utilize innova ...

    STTR Phase I 2020 Department of DefenseNavy
US Flag An Official Website of the United States Government