You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multiple-order, Automatic mesh generation for multidisciplinary Analysis

    SBC: CFD RESEARCH CORPORATION            Topic: N23AT001

    Multidisciplinary design, analysis, and optimization of hypersonic aircraft require automated adaptive mesh generation across disparate length scales. In the current state-of-the-art, geometry-aware adaptive meshing techniques are still lacking and the such geometric discrepancy can lead to significant errors in the prediction of critical physics, such as shock-boundary layer interaction and fatig ...

    STTR Phase I 2023 Department of DefenseNavy
  2. Improved Physics Modeling for Sand Particulate Tracking and Deposition in Gas Turbine Engines

    SBC: ALIR TECHNOLOGIES LLC            Topic: N23AT003

    The effect of particle ingestion in gas turbine engines has become a significant problem in recent decades. Commercial and military aircraft and helicopter engines currently operate over various terrains with particles. Vehicles near the ocean, for example, typically come across sea spray, which contains fine particulates of salt and can lead to the quick corrosion of metallic engine parts inside ...

    STTR Phase I 2023 Department of DefenseNavy
  3. Time Resolved Multiparameter Flow Diagnostic for Engine Exhaust Plumes

    SBC: METROLASER, INCORPORATED            Topic: N23AT005

    High temperature jet plumes emanating from aircraft engines and missiles produce effects that are of interest for threat detection, environmental noise, and engine development purposes. Optical and infrared emissions from plumes are sources of light and heat signatures, respectively, that can potentially be used for tracking or targeting vehicles in flight.  Acoustic noise from jet plumes can pot ...

    STTR Phase I 2023 Department of DefenseNavy
  4. Mid-wave Infrared Metasurface Zoom Imaging Optics

    SBC: CFD RESEARCH CORPORATION            Topic: N23AT007

    Infrared imaging systems mounted to unmanned aerial vehicles (UAV) are critical for intelligence, surveillance, and reconnaissance (ISR) missions. While much progress has been made in miniaturizing the electronics/cooling package of these imaging systems, the optical components, which are typically large and bulky, can exceed size and weight requirements as well as increase the time needed to reac ...

    STTR Phase I 2023 Department of DefenseNavy
  5. Flat Lens Ultra-Compact Lightweight MWIR Zoom lens for small pixel

    SBC: ATTOLLO ENGINEERING, LLC            Topic: N23AT007

    Attollo Engineering will develop a zoom capable ultra-compact lightweight MWIR camera based off its commercial MWIR Griffin-HD8 camera with a zoom capable Metalens optic. The imager format is 1280 x 720 on an 8 micron pitch, among the smallest size in industry weighing just 240 grams without the optical lens, and was designed for small battery-operated Group 1 unmanned aerial vehicles (UAVs). The ...

    STTR Phase I 2023 Department of DefenseNavy
  6. A Massively Parallel Scalable Processor for Order of Magnitude Increase in Acceleration of Photonic Simulations

    SBC: VIRTUAL EM INC.            Topic: N23AT008

    Virtual EM proposes develop a massively parallel ASIC for orders of mangnitude speed up of electromagnetic simulations of thin optical lenses made of metamaterials. The ASIC will implement a prorietary algorithm and will deliver scalable run-times that cut the simulation time by more than 1000x compared to today's state-of-the-art simulators.

    STTR Phase I 2023 Department of DefenseNavy
  7. UUV Sensor Transformation

    SBC: Arete Associates            Topic: N23AT013

    Areté and its teaming partner the University of Arizona (UofA) will develop a software tool that transforms sensor and metadata from a given sensor system into realistic synthetic data as if it were collected by a different sensor system. The exponential rise in available data from a multitude of sensor systems has driven commercial and academic entities to achieve significant innovations in arti ...

    STTR Phase I 2023 Department of DefenseNavy
  8. AI-Based Learning Environment (ABLE) for Undersea Warfare (USW) Training

    SBC: PACIFIC SCIENCE & ENGINEERING GROUP, INC.            Topic: N23AT014

    To compete on the world stage of undersea warfare (USW), the US Navy’s USW systems are frequently updated with advanced capabilities. As a result, modernization trainers need to perform the challenging tasks of updating training material to reflect the new (and obsolete) capabilities. This process requires comparing legacy to updated documentation, identifying changes to system capabilities, and ...

    STTR Phase I 2023 Department of DefenseNavy
  9. Non-thermal Plasma for Deployable JP-10 Fuel Synthesis

    SBC: MALACHITE TECHNOLOGIES INC            Topic: N23AT015

    Our Phase I project will synthesize JP-10 jet fuel from CO2 feedstock using a multi-step process.  CO2 will be converted to syngas (CO and H­2) in a plasma reactor. The syngas will be used as the feedstock for a catalytic Fischer-Tropsch synthesis of JP-10. This carbon-neutral system will be easily deployable to synthesize jet fuel in remote locations, fit in a standard shipping container, and i ...

    STTR Phase I 2023 Department of DefenseNavy
  10. Novel Method for Renewable JP10 Production

    SBC: Technology Holding, LLC            Topic: N23AT015

    Currently, all JP10 is produced from fossil sources. The objective of the proposed project is to develop a scalable synthetic approach to producing JP-10 that meets military specification, MIL-DTL-87107E from non-fossil sustainable energy resources. During phase I, we will define, develop, and perform initial laboratory assessment of the proposed synthetic process to validate the technical feasi ...

    STTR Phase I 2023 Department of DefenseNavy
US Flag An Official Website of the United States Government