You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Bounding generalization risk for Deep Neural Networks

    SBC: Euler Scientific            Topic: NGA20A001

    Deep Neural Networks have become ubiquitous in the modern analysis of voluminous datasets with geometric symmetries. In the field of Particle Physics, experiments such as DUNE require the detection of particle signatures interacting within the detector, with analyses of over a billion 3D event images per channel each year; with typical setups containing over 150,000 different channels.  In an ...

    STTR Phase I 2020 Department of DefenseNational Geospatial-Intelligence Agency
  2. Human Performance Optimization: Ketone Esters for Optimization of Operator Performance in Hypoxia

    SBC: HVMN Inc.            Topic: SOCOM17C001

    In the setting of altitude-induced hypoxia, operator cognitive capacity degrades and can compromise both individual and team performance. This degradation is linked to falling brain energy (ATP) levels and an increased reliance on anaerobic energy production from glucose. Ketone bodies are the evolutionary alternative substrate to glucose for brain metabolic requirements; previous studies have sho ...

    STTR Phase I 2018 Department of DefenseSpecial Operations Command
  3. Marburg Virus Prophylactic Medical Countermeasure

    SBC: MAPP BIOPHARMACEUTICAL, INC.            Topic: CBD18A002

    There are currently no vaccines or therapeutics available for Marburg Virus Disease (MVD). Given the specter of weaponization and the terriblemorbidity and high mortality rate of MVD, this represents a critical threat to the operational readiness of the Warfighter. While traditionalvaccines have proven to be a huge contribution to public health, they do have some limitations especially in the cont ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  4. Marburg Virus Prophylactic Medical Countermeasure

    SBC: Flow Pharma, Inc.            Topic: CBD18A002

    Flow Pharma, Inc. is a biotechnology company in the San Francisco Bay Area developing fully synthetic cytotoxic T lymphocyte (CTL)stimulating peptide vaccines for Marburg virus. The FlowVax vaccine platform allows us to create dry powder formulations of biodegradablemicrospheres and TLR adjuvants incorporating class I and class II T cell epitopes. FlowVax vaccines can be designed for delivery by i ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  5. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  6. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH, INC.            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  7. Virus-Like Particle Based pan-Marburgvirus Vaccine

    SBC: Luna Innovations Incorporated            Topic: CBD18A002

    Marburg virus (MARV) is a filamentous enveloped non-segmented negative sense RNA virus. This viruse is considered to be extremelydangerous with case fatality rates as high as 88-90%. Extensive efforts have gone towards effective vaccines for MARV prevention, however,none have been successfully established as licensed vaccines. Glycoprotein (GP) is the only surface protein of MARV. There are substa ...

    STTR Phase I 2018 Department of DefenseOffice for Chemical and Biological Defense
  8. Development of powder bed printing (3DP) for rapid and flexible fabrication of energetic material payloads and munitions

    SBC: MAKEL ENGINEERING, INC.            Topic: DTRA16A001

    This program will demonstrate how additive manufacturing technologies can be used with reactive and high energy materials to create rapid and flexible fabrication of payload and munitions. Our primary approach to this problem will be to use powder bed binder printing techniques to print reactive structures. The anticipated feedstock will consist of composite particles containing all reactant spe ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Rapid Development of Weapon Payloads via Additive Manufacturing

    SBC: Matsys Incorporated            Topic: DTRA16A001

    MATSYS proposes to adapt emerging additive manufacturing techniques (so-called 3-D Printing) for use with reactive structural materials and demonstrate this capability to rapidly fabricate reactive case. Our concept incorporates two major manufacturing steps: 3D printing of green compacts from pure Al or Al-based reactive powder blend; and Microwave (MW) sintering of green compacts into net-shaped ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  10. Self-fragmenting Structural Reactive Materials (SF-SRM) for High Combustion Efficiency

    SBC: Matsys Incorporated            Topic: DTRA16A002

    MATSYS proposes to develop, test and evaluate a scalable metal-based reactive structural material that will self-fragment to micron or sub-micron scale fuel particles when subjected to explosive shock loading, resulting in significantly enhanced metal combustion efficiency. Use of reactive material casings offers the potential for several-fold increases in blast and overpressure by generating rapi ...

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government