Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until September, 2020.

  1. Packaging High Power Photodetectors for 100 MHz to 100 GHz RF Photonic Applications

    SBC: Phase Sensitive Innovations, Inc.            Topic: AF131142

    ABSTRACT: In this SBIR effort we will develop a packaging process and demonstrate (Phase I) a prototype of high power Photodiode (PD) that has a normal incident, pigtailed fiber input and a coaxial RF output that operates from DC to>60GHz. We will apply and extend (Phase II) the aforementioned packaging process to single PD, balanced PD and array of PDs that work from DC through entire W-band. De ...

    SBIR Phase I 2013 Department of DefenseAir Force
  2. Electro-Optically Guided Radar Imaging

    SBC: Phase Sensitive Innovations, Inc.            Topic: A13040

    Millimeter-wave RADAR imaging holds significant promise for many applications from rotorcraft DVE mitigation to standoff security screening. A key challenge of this imaging modality, however, has been the implementation of an effective method for creating an image without relying on either mechanical scanning or expensive, high SWAP phased array techniques. Herein, we present a concept for creat ...

    SBIR Phase I 2013 Department of DefenseArmy
  3. "Night Glow"Short Wave Infrared LED (NSLED) Image Projector Development

    SBC: Chip Design Systems LLC            Topic: AF131098

    ABSTRACT: This project aims to develop a Short Wave Infrared band image projector to provide real time detector stimulation with high dynamic range. Our emitter technology is based on GaInAsSb quaternary semiconductor LED arrays hybridized to CMOS read-in integrated circuits. This project leverages read-in circuit design and control electronics that were developed under SLEDS - a longer wavelengt ...

    SBIR Phase I 2013 Department of DefenseAir Force
  4. A New Standard for Power-Aware Programming

    SBC: EM PHOTONICS INC            Topic: A13029

    New enhancements to mobile computers including smaller sensors, displays and powerful processors have made them much more attractive for the battlefield, not only as wearable systems for soldiers, but also unattended ground sensors a warfighter can leave behind for situational awareness. Unfortunately, while the technologies for hands-free interfacing have improved greatly, the challenge of limiti ...

    SBIR Phase I 2013 Department of DefenseArmy
  5. A Novel, Low Cost and Handheld Microwave Sensor for the Detection and Evaluation of Incipient Composite Heat Damage

    SBC: ALPHASENSE, INC.            Topic: N131013

    In this proposal, AlphaSense, Inc. details the development of a novel, low cost and handheld microwave sensor for the detection and evaluation of incipient composite heat damage. The merits of the proposed sensor and its advantages over other techniques are listed below: a) Compact, handheld and low cost, b) Sensitive for incipient heat damage detection, c) Capable of quantitative analysis of the ...

    SBIR Phase I 2013 Department of DefenseNavy
  6. Dynamic Frequency Passive Millimeter-Wave Radiometer Based on Optical Up-Conversion

    SBC: Phase Sensitive Innovations, Inc.            Topic: 941D

    In the proposed effort, we will leverage this extensive experience and capabilities to realize a frequency agile mmW radiometer that can cover the range of DC-110 GHz and can be scaled to DC-200 GHz under Phase II. Ours is a photonic system that multiplies and up-coverts a low-frequency reference signal onto an optical carrier (laser) using EO modulation, then uses the modulation sidebands to inj ...

    SBIR Phase I 2013 Department of CommerceNational Oceanic and Atmospheric Administration
  7. Frequency Agile Millimeter Wave (MMW) Signal Generator

    SBC: Phase Sensitive Innovations, Inc.            Topic: N131080

    PSI will leverage our extensive experience and unique capabilities in MMW photonics to design a compact, lightweight, frequency-agile MMW source combining wide, continuous, rapid tunability with superb phase noise and moderate output power. Such a source will have extensive commercial applications in next-generation wireless communications, as well as military applications including reconfigurable ...

    SBIR Phase I 2013 Department of DefenseNavy
US Flag An Official Website of the United States Government