You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Additive Manufacturing for RF Materials and Antennas

    SBC: Delux Advanced Manufacturing, LLC            Topic: A18020

    To reduce size, weight, power and cost (SWaP-c), military platforms have been evolving towards more integrated platforms that utilize all available space. For radiating systems, this will require exploring innovative design methods, materials and manufacturing approaches to realize cost-effective, customizable and conformal antennas. An attractive solution to this challenge is offered by additive ...

    SBIR Phase II 2019 Department of DefenseArmy
  2. A Novel, Nanostructured, Metal-organic Frameworks-Based Product Loss Prevention Technology in the Oil and Natural Gas Sector

    SBC: FRAMERGY INC            Topic: 18NCERP2

    To reach the end user, oil and gas production at the wellhead must be transmitted through the country and distributed to a wide range of customers. This logisticalsystem requires natural gas gathering lines, processing facilities,product storage tanks and Jots of other equipment. What results is air pollution caused by industry losses during these operations and the use of continuous or intermitte ...

    SBIR Phase II 2019 Environmental Protection Agency
  3. ATCOM SHARP Box for Real-Time Turbulence Mitigation

    SBC: EM PHOTONICS INC            Topic: NASAA402

    When imaging over long distances, atmospheric turbulence between the camera and subject degrades the collected data limiting the effective resolution, regardless of the quality of the optic and sensor used. This reduction in image quality can have serious impacts on the ability to carry out missions by reducing situational awareness and preventing target identification. EM Photonics has been worki ...

    SBIR Phase II 2017 Department of DefenseSpecial Operations Command
  4. Automated Biological Sample Concentration and Detection System

    SBC: ANP TECHNOLOGIES INC.            Topic: A06T022

    ANP Technologies proposes to integrate a commercially available air sample concentrator from ICx MesoSystems with our automated detection instrument that uses the NIDS® multiplexed assays and NIDS® Auto-Reader (AR) device. A trigger device may also be incorporated into the final system, which might better enable the system to serve as a remote monitor of air streams. The proposed effort will b ...

    STTR Phase II 2008 Department of DefenseArmy
  5. Chemical Nano-Imprint Lithography

    SBC: EM PHOTONICS INC            Topic: SB041030

    The overall objective of this Phase II project is to optimize the fabrication procedure associated with the chemical lithography proposed in Phase I to fabricate nanophotonic structures and devices at a fraction of the cost of existing technologies. We plan to use our optimized chemical lithography procedure to fabricate an ultra-high resolution patterns and devices including nano-probe for near f ...

    SBIR Phase II 2005 Department of DefenseDefense Advanced Research Projects Agency
  6. Compact Passive Millimeter Wave Sensor for GPS-denied Navigation

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF15AT26

    Under the proposed effort, PSI will leverage a novel pmmW imaging technology developed under a prior Navy program to realize the low size, weight, and power sensors required for UAV implementation. This technology is based on an optical upconverted distributed aperture technology that can make large effective apertures in low SWaP form factors thereby maximizing achievable resolution. This sensor ...

    STTR Phase II 2017 Department of DefenseAir Force
  7. Dense Arrays for High-Fidelity, Optically-Sampled Passive Millimeter-wave Imaging

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: A13040

    Under the proposed effort, PSI will continue to develop a novel pmmW imaging technology developed under a prior Navy program to realize dense form factor arrays. This technology is based on an optical upconverted distributed aperture technology that can make large effective apertures in low SWaP form factors thereby maximizing achievable resolution. This sensor technology has already reached TRL 6 ...

    SBIR Phase II 2017 Department of DefenseArmy
  8. Develop integrated analog photonic modulator components compatible with photonic foundry production

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF171126

    In phase II work, we will collaborate with Prof. Dennis W. Prather in UD and continue to develop broadband, low VÏ€, high linearity, thin-film lithium niobate on insulator (LNOI) modulators that are fully compatible with silicon photonic integrated circuits (PIC) foundry processes. We will demonstrate a low VÏ€, broadband, small footprint LNOI modulator with hybrid Si/LN or SiN/LN waveguide ...

    SBIR Phase II 2018 Department of DefenseAir Force
  9. Efficient Arrays for Generating Light Emission (EAGLE)

    SBC: Chip Design Systems Inc.            Topic: AF16AT22

    With today's IRLED devices, >99.4% of input electrical power is converted into parasitic/waste heat. Moreover, as the local temperatures of the pixels increase due to the generated heat, IRLED optical efficiency is further reduced. Overall this severely limits the number and intensity of array pixels that can be simultaneously operated at high apparent temperatures. In Phase 2, we focus on develop ...

    STTR Phase II 2017 Department of DefenseAir Force
  10. Enhancing FPGA Performance Through Integrated Optical Interconnects

    SBC: EM PHOTONICS INC            Topic: AF06T006

    FPGAs have attracted a great deal of attention over the past decade because of their performance, scalability, and cost relative to traditional hardware platforms. However, one of the most significant disadvantages of FPGAs is based on the underlying architecture on which they are built. Specifically, routing delay through the chip is one of the largest bottlenecks in developing FPGA-based appli ...

    STTR Phase II 2008 Department of DefenseAir Force
US Flag An Official Website of the United States Government