You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Impact-Resistant, Damage-Tolerant Composites with STF Energy Absorbing Layers

    SBC: STF TECHNOLOGIES LLC            Topic: H4

    We propose an innovative hybrid composite material containing shear thickening fluid (STF) Energy Absorbing Layers (SEALs) that provides superior impact protection and novel, self-healing functionality to prevent leakage after impact. The proposed innovation directly addresses the need for thin, lightweight, impact-resistant composite materials that can be fabricated in complex geometries for nex ...

    SBIR Phase II 2018 National Aeronautics and Space Administration
  2. Design and Process Development of Thin-Ply Composites

    SBC: COMPOSITES AUTOMATION LLC            Topic: T12

    Composites Automation LLC (CA), our academic partner University of Delaware – Center for Composite Materials (UD-CCM) are teaming up in this STTR Phase II project to evaluate automated tape placement (ATP) processing of thin-ply composites, including material and process development, creation of a modeling foundation capturing thin-ply placement, test panel fabrication and mechanical performance ...

    STTR Phase II 2018 National Aeronautics and Space Administration
  3. Develop integrated analog photonic modulator components compatible with photonic foundry production

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF171126

    In phase II work, we will collaborate with Prof. Dennis W. Prather in UD and continue to develop broadband, low VÏ€, high linearity, thin-film lithium niobate on insulator (LNOI) modulators that are fully compatible with silicon photonic integrated circuits (PIC) foundry processes. We will demonstrate a low VÏ€, broadband, small footprint LNOI modulator with hybrid Si/LN or SiN/LN waveguide ...

    SBIR Phase II 2018 Department of DefenseAir Force
  4. Wafer-Level Electronic-Photonic Co-Packaging

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF16AT01

    In phase II work, we will collaborate with Prof. Stefan Preble in RIT and continue to develop large scale hybrid integration and packaging techniques for key active photonic components such as lithium niobate on insulator (LNOI) modulators and modified uni-traveling (MUTC) photodiodes. We will demonstrate a low V, broadband, small footprint LNOI modulator with hybrid Si/LN or SiN/LN waveguide usin ...

    STTR Phase II 2018 Department of DefenseAir Force
  5. The Vulcan Advanced Hybrid Manufacturing System

    SBC: Made In Space, Inc.            Topic: H7

    Building on previously funded work by NASA and DARPA, its internal research and development projects, and manufacturing activities occurring on the International Space Station (ISS), Made In Space, Inc. (MIS) is developing the VULCAN system to address NASA’s requirement to produce high-strength, high-precision polymer and metallic components on-orbit with comparable quality to commercially-avail ...

    SBIR Phase II 2018 National Aeronautics and Space Administration
  6. Impact Resistant Composite Structures for Space Suit Applications

    SBC: COMPOSITES AUTOMATION LLC            Topic: H4

    Composites Automation (CA) proposes to collaborate with the University of Delaware Center for Composite Materials (UD-CCM) and our industry transition partner ILC Dover, to develop innovative material and structure concepts for next generation Space Suit hard composite components. The SBIR goals are develop material systems that survive an impact of 300 J at

    SBIR Phase II 2018 National Aeronautics and Space Administration
  7. Multicore Fiber Optic Package Optical Subassembly for Wideband Digital and Analog Photonic Links

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: N182101

    In this SBIR effort we will develop a balanced detection analog photonic link consisting of a DFB laser, a dual-output high-speed, low-Vp mach-zehnder modulator (MZM) and a high-power, high-linearity balanced photodetector (BPD) using a dual-core, single mode, multicore fiber (MCF) that is supplied by our subcontractor, OFS. We will design, fabricate and characterize (phase I) the MZM and the BPD, ...

    SBIR Phase I 2018 Department of DefenseNavy
  8. Industrial Crystallization Facility for Nonlinear Optical Materials

    SBC: Made In Space, Inc.            Topic: H8

    Made In Space, Inc. (MIS) proposes the development, to a critical design level, of an Industrial Crystal Facility (ICF) for microgravity product manufacturing and applied research. The ICF is focused on advanced materials engineering, rather than biomedical research, and expands utilization of the ISS into new product areas not previously investigated. Intended applications include nonlinear optic ...

    SBIR Phase II 2018 National Aeronautics and Space Administration
  9. Additive Manufacturing for RF Materials and Antennas

    SBC: Delux Advanced Manufacturing, LLC            Topic: A18020

    To reduce size, weight, power and cost (SWaP-c), military platforms have been evolving towards more integrated platforms that utilize all available space. For radiating systems, this will require exploring innovative design methods, materials and manufacturing approaches to realize cost-effective, customizable and conformal antennas. An attractive solution to this challenge is offered by additive ...

    SBIR Phase I 2018 Department of DefenseArmy
  10. Instant k-Space Tomography for Spatial-Spectral Monitoring

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF17AT013

    The Army is frequently forced to operate in hostile climates. Heavy fog, rain, snow, and dust storms can inhibit the performance of tracking technologies such as mid-wave infrared cameras. In such conditions, Army early warning systems are blinded and put personnel and assets at risk.There is a specific need for a degraded visual environment (DVE) penetrative target tracking solution.Radio frequen ...

    STTR Phase II 2018 Department of DefenseAir Force
US Flag An Official Website of the United States Government