You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Image Enhancement and Machine Learning for Improving Man-Portable Targeting Systems

    SBC: EM PHOTONICS INC            Topic: N172102

    Modern DoD applications are benefiting from the proliferation of EO/IR sensor technology. As imagers become cheaper and smaller, they are being more widely deployed for a variety of scenarios. This trend is exemplified by the Navys Future Targeting System (FTS), which will provide laser designation, laser spot imaging, and some target location functions in a single 5.5-pound unit, replacing discre ...

    SBIR Phase I 2018 Department of DefenseNavy
  2. Active Imaging through Fog

    SBC: Blackmore Sensors and Analytics, Inc.            Topic: N18AT021

    For this Phase 1 Small Business Technology Transfer (STTR) project, Blackmore Sensors and Analytics and university partner Montana State University will investigate the use of coherent frequency modulated continuous wave (FMCW) ladar/lidar and digital holography techniques for improved performance of active imaging through fog. Coherent range, Doppler, and polarization selective digital holography ...

    STTR Phase I 2018 Department of DefenseNavy
  3. Drone-Based Gas Mapping LiDAR for Leak Mitigation

    SBC: Bridger Photonics, Inc.            Topic: 17NCER2C

    Bridger Photonics, Inc. proposes developing a drone-based Gas Mapping LiDAR™ sensor to mitigate the loss of valuable product across the Oil & Gas supply chain.The sensor will uncover leaks and physical changes to infrastructure and pipeline right-of-ways using high-resolution 3D topographical imagery with methane gas concentration overlays.The technology will enable reliable detection, precise l ...

    SBIR Phase I 2018 Environmental Protection Agency
  4. A Novel, Nanostructured, Metal-organic Frameworks-Based Product Loss Prevention Technology in the Oil and Natural Gas Sector

    SBC: FRAMERGY INC            Topic: 17NCER2C

    To reach the end user, oil and gas production at the wellhead must be transmitted through the country and distributed to a wide range of customers. This logistical system requires natural gas gathering lines, processing facilities, product storage tanks and lots of other equipment. What results is air pollution caused by industry losses during these operations and the use of continuous or intermit ...

    SBIR Phase I 2018 Environmental Protection Agency
  5. 6000297

    SBC: Chip Design Systems Inc.            Topic: AF18AT017

    We propose to develop an innovative concept of the high speed dynamic IRSP that combines components and devices from proven suppliers with novel system-level research topics from CDS and University of Delaware. Having previously built and delivered working LED IRSPs to users gives CDS a unique advantage. In line with system theme of the solicitation, our phase 1 research topics are focused on syst ...

    STTR Phase I 2018 Department of DefenseAir Force
  6. Additive Manufacturing for RF Materials and Antennas

    SBC: Delux Advanced Manufacturing, LLC            Topic: A18020

    To reduce size, weight, power and cost (SWaP-c), military platforms have been evolving towards more integrated platforms that utilize all available space. For radiating systems, this will require exploring innovative design methods, materials and manufacturing approaches to realize cost-effective, customizable and conformal antennas. An attractive solution to this challenge is offered by additive ...

    SBIR Phase I 2018 Department of DefenseArmy
  7. Low-cost Imager for Heavily Degraded Visual Environments

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: A18040

    This project aims to develop a low-cost millimeter-wave (mmW) imaging system for ground vehicles, to operate in combination with a long-wave infrared (LWIR) camera. Such a system will mitigate the challenges of driving in degraded visual environments (DVE) including night time, fog, dust, or smoke by providing real-time image of the vehicle surrounding independent from the presence of naturally oc ...

    SBIR Phase I 2018 Department of DefenseArmy
  8. Novel In-Cylinder Wear Coatings for Improved High Output Military Diesel Engine Performance and Durability

    SBC: NANOCOATINGS INC            Topic: A18099

    Future U.S. Army vehicles will require engines with low heat rejection, high power density, lower-friction (15 % reduction), reduced fuel consumption (2-5% lower), and higher durability. Our team, NanoCoatings, Inc. (NCI) and Southwest Research Institute (SwRI), will down-select the most promising coating technologies and coating materials for both piston-rings and cylinder-liners. Our preliminary ...

    SBIR Phase I 2018 Department of DefenseArmy
  9. Alternative Mixing Technologies for High-Energy, Solid Materials for Large Gas Generator Propellant

    SBC: RESODYN CORPORATION            Topic: N172141

    The Phase I project objective is to develop and demonstrate the feasibility for use of an alternative process for mixing high-energy solid propellant materials that are used for gas generators in U.S. Navy strategic missile post-boost propulsion systems, other large missiles, and launch vehicles. In addition, the advanced mixing technology does not use impellers for mixing. The process selected fo ...

    SBIR Phase I 2018 Department of DefenseNavy
  10. Development and Assessment of No-Impeller, No-Blade Propellant Mixing Equipment and Procedures

    SBC: Highland Point, Inc.            Topic: N172141

    The Phase I effort provides an evaluation of variations of the no-impeller, no-blade propellant mixing approach. The assessment of this technology, specific trade studies of the incorporation of the technology into the propellant manufacturing process, and the accompanying laboratory evaluations demonstrate the feasibility of using this technology to replace the legacy methods for producing substa ...

    SBIR Phase I 2018 Department of DefenseNavy
US Flag An Official Website of the United States Government