You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Image Enhancement and Machine Learning for Improving Man-Portable Targeting Systems

    SBC: EM PHOTONICS INC            Topic: N172102

    Modern DoD applications are benefiting from the proliferation of EO/IR sensor technology. As imagers become cheaper and smaller, they are being more widely deployed for a variety of scenarios. This trend is exemplified by the Navys Future Targeting System (FTS), which will provide laser designation, laser spot imaging, and some target location functions in a single 5.5-pound unit, replacing discre ...

    SBIR Phase I 2018 Department of DefenseNavy
  2. A Novel, Nanostructured, Metal-organic Frameworks-Based Product Loss Prevention Technology in the Oil and Natural Gas Sector

    SBC: FRAMERGY INC            Topic: 17NCER2C

    To reach the end user, oil and gas production at the wellhead must be transmitted through the country and distributed to a wide range of customers. This logistical system requires natural gas gathering lines, processing facilities, product storage tanks and lots of other equipment. What results is air pollution caused by industry losses during these operations and the use of continuous or intermit ...

    SBIR Phase I 2018 Environmental Protection Agency
  3. Additive Manufacturing for RF Materials and Antennas

    SBC: Delux Advanced Manufacturing, LLC            Topic: A18020

    To reduce size, weight, power and cost (SWaP-c), military platforms have been evolving towards more integrated platforms that utilize all available space. For radiating systems, this will require exploring innovative design methods, materials and manufacturing approaches to realize cost-effective, customizable and conformal antennas. An attractive solution to this challenge is offered by additive ...

    SBIR Phase I 2018 Department of DefenseArmy
  4. Low-cost Imager for Heavily Degraded Visual Environments

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: A18040

    This project aims to develop a low-cost millimeter-wave (mmW) imaging system for ground vehicles, to operate in combination with a long-wave infrared (LWIR) camera. Such a system will mitigate the challenges of driving in degraded visual environments (DVE) including night time, fog, dust, or smoke by providing real-time image of the vehicle surrounding independent from the presence of naturally oc ...

    SBIR Phase I 2018 Department of DefenseArmy
  5. Multicore Fiber Optic Package Optical Subassembly for Wideband Digital and Analog Photonic Links

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: N182101

    In this SBIR effort we will develop a balanced detection analog photonic link consisting of a DFB laser, a dual-output high-speed, low-Vp mach-zehnder modulator (MZM) and a high-power, high-linearity balanced photodetector (BPD) using a dual-core, single mode, multicore fiber (MCF) that is supplied by our subcontractor, OFS. We will design, fabricate and characterize (phase I) the MZM and the BPD, ...

    SBIR Phase I 2018 Department of DefenseNavy
  6. Photonic Integrated Circuit Reliability

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: N182108

    Photonic integration, and specifically silicon photonics, has emerged as one of the leading solutions for maintaining or improving the performance of optical systems while addressing the requirements related to size, weight, and power (SWaP). Photonic integrated circuits (PICs), which integrate multiple photonic elements onto a single chip, are specifically suited to providing the complexity and f ...

    SBIR Phase I 2018 Department of DefenseNavy
  7. Develop integrated analog photonic modulator components compatible with photonic foundry production

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF171126

    In phase II work, we will collaborate with Prof. Dennis W. Prather in UD and continue to develop broadband, low VÏ€, high linearity, thin-film lithium niobate on insulator (LNOI) modulators that are fully compatible with silicon photonic integrated circuits (PIC) foundry processes. We will demonstrate a low VÏ€, broadband, small footprint LNOI modulator with hybrid Si/LN or SiN/LN waveguide ...

    SBIR Phase II 2018 Department of DefenseAir Force
  8. Low Voltage Power Sources for Long-Life Electronics

    SBC: TALOSTECH LLC            Topic: SB163009

    There is a critical need for DoD to develop power sources that will increase the mission lifetime for unattended sensors and sensor radio networks. In order to take advantage of recent advances in extremely low power subthreshold circuits to greatly exte...

    SBIR Phase I 2017 Department of DefenseDefense Advanced Research Projects Agency
  9. ATCOM SHARP Box for Real-Time Turbulence Mitigation

    SBC: EM PHOTONICS INC            Topic: NASAA402

    When imaging over long distances, atmospheric turbulence between the camera and subject degrades the collected data limiting the effective resolution, regardless of the quality of the optic and sensor used. This reduction in image quality can have serious impacts on the ability to carry out missions by reducing situational awareness and preventing target identification. EM Photonics has been worki ...

    SBIR Phase II 2017 Department of DefenseSpecial Operations Command
  10. Materials Development for Affordable Maritime Compatible Radio Frequency Materials

    SBC: SPECTRUM MAGNETICS LLC            Topic: N162117

    This Phase I SBIR proposal aims to develop flexible and maritime compatible radio frequency (RF) materials for microwave absorbing material applications and antenna applications at GHz frequencies. Based on the deep understanding of material physics for high frequency properties, and extensive experience in fabricating and supplying RF materials, Spectrum Magnetics proposes several material platfo ...

    SBIR Phase I 2017 Department of DefenseNavy
US Flag An Official Website of the United States Government