Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. 6000297

    SBC: Chip Design Systems LLC            Topic: AF18AT017

    We propose to develop an innovative concept of the high speed dynamic IRSP that combines components and devices from proven suppliers with novel system-level research topics from CDS and University of Delaware. Having previously built and delivered working LED IRSPs to users gives CDS a unique advantage. In line with system theme of the solicitation, our phase 1 research topics are focused on syst ...

    STTR Phase I 2018 Department of DefenseAir Force
  2. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: Reaction Engineering International            Topic: N10AT002

    The primary objective of the proposed effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will build on ...

    STTR Phase I 2010 Department of DefenseNavy
  3. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: Reaction Engineering International            Topic: N10AT002

    The objective of the proposed Phase II STTR effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will bu ...

    STTR Phase II 2011 Department of DefenseNavy
  4. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: Reaction Engineering International            Topic: N10AT002

    The objective of the proposed Phase II STTR effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will bu ...

    STTR Phase II 2015 Department of DefenseNavy
  5. A Multivalent Lyme Disease Vaccine Targeting Tick-Host-Pathogen Interactions

    SBC: L2 DIAGNOSTICS, LLC            Topic: NIAID

    DESCRIPTION provided by applicant This proposal seeks to develop a novel vaccine against Lyme disease by targeting Ixodes scapularis proteins critical for Borrelia burgdorferi transmission from the tick to mammalian host Earlier work has identified four tick proteins Salp TRE tHRF and TSLPI that facilitate different steps of spirochete transmission and immunity against these protein ...

    STTR Phase I 2014 Department of Health and Human ServicesNational Institutes of Health
  6. A novel approach to treat non alcoholic steatohepatitis NASH

    SBC: Mitotherapeutix LLC            Topic: 300

    Abstract The Specific Aim of this Phase I STTR proposal is to test the feasibility of treating non alcohol steatohepatitis NASH by increasing mitochondrial metabolism which is the main pathway for lipid catabolism in the liver NASH is a stage of non alcohol fatty liver disease NAFLD that has progressed to a pathological state NASH can lead to cirrhosis leading to liver failure or hepatocel ...

    STTR Phase I 2017 Department of Health and Human ServicesNational Institutes of Health
  7. A Novel Noninvasive Microwave Sensor for Quantitative Assessment of Degree of Sensitization in Marine Aluminum Alloys

    SBC: ALPHASENSE, INC.            Topic: N09T022

    In phase I, we have proven the feasibility of using the microwave cavity perturbation technique to detect and quantify DoS in marine aluminum alloys. We implemented an alpha version sensor prototype, characterized and validated its performance using ASTM G67 method. We also identified methods to further enhance the sensor sensitivity, so that DoS in the low (a few mg/cm2) to moderate range can be ...

    STTR Phase II 2010 Department of DefenseNavy
  8. A Novel Noninvasive Microwave Sensor for Quantitative Assessment of Degree of Sensitization in Marine Aluminum Alloys

    SBC: ALPHASENSE, INC.            Topic: N09T022

    In this proposal, AlphaSense, Inc. (AI) and the Pennsylvania State University (PSU) detail the development of a novel noninvasive microwave sensor to quantify the DoS in marine aluminum alloys. The key innovations of this proposal include the following: a) DoS quantifications based on the correlation between the surface resistivity with the microstructures of the aluminum alloys, b) measurements o ...

    STTR Phase I 2009 Department of DefenseNavy
  9. A Platform-Independent Framerwork for Efficient Massively Parallel Execution

    SBC: EM PHOTONICS INC            Topic: OSD11T02

    Next-generation high-performance computers (HPCs) are built as massively parallel systems where the parallelism exists at many levels. These systems are a collection of nodes all working together. Each node generally contains more than one processor and each processor contains multiple cores. Managing and efficiently utilizing the different parallelism in such a system is a complex task. Furth ...

    STTR Phase I 2012 Department of DefenseAir Force
  10. A Pressure-Dependent Detailed Chemical Kinetic Model for JP-10 Combustion

    SBC: Reaction Engineering International            Topic: N09T011

    Investigations into JP-10 combustion chemistry thus far can be characterized as preliminary. The detailed chemical kinetic mechanisms that have been published are limited in their ability to reproduce experimental data. The combustion chemistry of JP-10 is highly complex, involving hundreds if not thousands of species and thousands of chemical reactions. A detailed kinetic model capable of predict ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government