You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Automated Biological Sample Concentration and Detection System

    SBC: ANP TECHNOLOGIES INC.            Topic: A06T022

    ANP Technologies proposes to integrate a commercially available air sample concentrator from ICx MesoSystems with our automated detection instrument that uses the NIDS® multiplexed assays and NIDS® Auto-Reader (AR) device. A trigger device may also be incorporated into the final system, which might better enable the system to serve as a remote monitor of air streams. The proposed effort will b ...

    STTR Phase II 2008 Department of DefenseArmy
  2. Compact Passive Millimeter Wave Sensor for GPS-denied Navigation

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF15AT26

    ABSTRACT: Under the proposed effort, PSI will leverage a novel pmmW imaging technology developed under a prior Navy program to realize the low size, weight, and power sensors required for UAV implementation. This technology is based on an optical upconverted distributed aperture technology that can make use of the full aperture of the aircraft thereby maximizing achievable resolution. This sensor ...

    STTR Phase I 2015 Department of DefenseAir Force
  3. Compact Passive Millimeter Wave Sensor for GPS-denied Navigation

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF15AT26

    Under the proposed effort, PSI will leverage a novel pmmW imaging technology developed under a prior Navy program to realize the low size, weight, and power sensors required for UAV implementation. This technology is based on an optical upconverted distributed aperture technology that can make large effective apertures in low SWaP form factors thereby maximizing achievable resolution. This sensor ...

    STTR Phase II 2017 Department of DefenseAir Force
  4. Corrosion Resistant Missile Cell Hatch Cover

    SBC: PACIFIC ENGINEERING, INC.            Topic: N141041

    PEI will development and design a light weight, resistant to corrosion and ice adhesion, water tight and low maintenance VLS Composite Missile Hatch. PEI design will include polymers and nanofibers and materials, will utilize low costs composite manufacturing, design, performance evaluation, and analysis techniques will enable us to develop a cell hatch that will meet all performance requirements. ...

    STTR Phase II 2017 Department of DefenseNavy
  5. C-RAM: Cognitively-Based Rapid Assessment Methodology

    SBC: 21ST CENTURY SYSTEMS, INC.            Topic: N06T025

    The essence of information assessment is the process of distinguishing signals from noise. In the military, intelligence analysts are constantly searching for signals that might suggest an adversary’s intentions. In each case, the analyst must search through a quantity of data, searching for meaningful patterns within the preponderance of noise. In many cases, it becomes necessary to divide the ...

    STTR Phase II 2008 Department of DefenseNavy
  6. Efficient Arrays for Generating Light Emission (EAGLE)

    SBC: Chip Design Systems Inc.            Topic: AF16AT22

    With today's IRLED devices, >99.4% of input electrical power is converted into parasitic/waste heat. Moreover, as the local temperatures of the pixels increase due to the generated heat, IRLED optical efficiency is further reduced. Overall this severely limits the number and intensity of array pixels that can be simultaneously operated at high apparent temperatures. In Phase 2, we focus on develop ...

    STTR Phase II 2017 Department of DefenseAir Force
  7. Enhancing FPGA Performance Through Integrated Optical Interconnects

    SBC: EM PHOTONICS INC            Topic: AF06T006

    FPGAs have attracted a great deal of attention over the past decade because of their performance, scalability, and cost relative to traditional hardware platforms. However, one of the most significant disadvantages of FPGAs is based on the underlying architecture on which they are built. Specifically, routing delay through the chip is one of the largest bottlenecks in developing FPGA-based appli ...

    STTR Phase II 2008 Department of DefenseAir Force
  8. Functional Additive Manufacturing for Printable & Networkable Sensors to Detect Energetics and Other Threat Materials

    SBC: Delux Advanced Manufacturing, LLC            Topic: A17AT004

    Chemiresistors are an important class of electronic sensors that detect the presence of analytes/chemicals via a change in the resistance of a sensor element. A typical interdigitated electrode array is deposited onto an insulating substrate with metallic electrodes that have feature sizes in the 5-500 m range. The metal electrodes are typically sputter coated onto the substrate, using lithogra ...

    STTR Phase I 2017 Department of DefenseArmy
  9. Instant k-Space Tomography for Spatial-Spectral Monitoring

    SBC: PHASE SENSITIVE INNOVATIONS INC            Topic: AF17AT013

    The Army is frequently forced to operate in hostile climates. Heavy fog, rain, snow, and dust storms can inhibit the performance of tracking technologies such as mid-wave infrared cameras. In such conditions, Army early warning systems are blinded and put personnel and assets at risk. There is a specific need for a degraded visual environment (DVE) penetrative target tracking solution. Radio fre ...

    STTR Phase I 2017 Department of DefenseAir Force
  10. Modeling of Integrally Bladed Rotor (IBR) Blends

    SBC: Optimal Solutions Software, LLC            Topic: N13AT002

    The main goal of Phase II is to validate the Phase I prototype and develop an integrated design and analysis tool for assessing large damage and blends for compressor IBRs on gas turbine engines and other blade systems. This tool will have at its core the automated analytical modeling of as-measured or as-expected airfoil blends for the structural and aero response to the shape change due to blend ...

    STTR Phase II 2015 Department of DefenseNavy
US Flag An Official Website of the United States Government