You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

    SBC: White River Technologies Inc            Topic: A16AT004

    White River Technologies, Inc. (WRT) presents this proposal, "Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines".The primary goal of the proposed effort is to develop a prototype vibrationally-enhanced detection system capable of landmine and IED detection and discrimination with performance greater than conventional GPR sensors.The main sensing compo ...

    STTR Phase II 2017 Department of DefenseArmy
  2. Acoustic Mitigation System For Horizontal, Planar Surfaces Onboard Naval Ships

    SBC: NEVA ASSOC.            Topic: N08T014

    Typical acoustic materials rely on embedded continuous mass layer to attenuate low frequency sound. Energy from low frequency sound is not effectively mitigated with these materials unless a substantial amount of mass is added. Thus, standard materials for low frequency noise control tend to be heavy, expensive and difficult to install. A new technology is being developed that utilizes optimized ...

    STTR Phase I 2008 Department of DefenseNavy
  3. AC Plasma Sensor For High Enthalpy Hypersonic Test Facilities

    SBC: SPECTRAL ENERGIES LLC            Topic: AF17AT002

    Spectral Energies and the University of Notre Dame is developing a new class of point-wise sensors for high-enthalpy conditions that rely on the use of a weakly ionized AC discharge between two electrodes as the main sensing element. The advantages of this approach include a native high bandwidth with a theoretical maximum in excess of 15 MHz and a simple mechanical design that is inherently robus ...

    STTR Phase I 2017 Department of DefenseAir Force
  4. Adaptive Hierarchical Multiple Models to Control Dynamic Systems

    SBC: SCIENTIFIC SYSTEMS CO INC            Topic: AF07T012

    Modern control theory offers mathematically rigorous and powerful solutions to many dynamic systems. Its limitations are that the classes of dynamic systems covered by the theory are limited to linear systems or certain well-structured nonlinear systems, and the adaptation of the controllers are often slow if the controller parameters are far away from their desired values. On the other hand, the ...

    STTR Phase I 2008 Department of DefenseAir Force
  5. Additive Manufactured Smart Structures with Discrete Embedded Sensors

    SBC: TRITON SYSTEMS, INC.            Topic: A17AT024

    The purpose of this proposal is to additively manufacture (AM) smart structures with embedded electronics such as sensors, accelerometers, antennas, etc. The goal of these smart structures will be to enhance the effectiveness and survivability of the Armys ground systems. The use of additive manufacturing smart structures provides flexibility in the materials used and the functionality of the elec ...

    STTR Phase I 2017 Department of DefenseArmy
  6. Advanced Chemistry and Radiation Modules for Hypersonic Signatures

    SBC: SPECTRAL SCIENCES INC            Topic: MDA15T003

    Karagozian & Case, Inc. (K&C) and the Georgia Institute of Technology (Georgia Tech) will develop a re-usable, cost-effective, and accurate dynamic characterization methodology capable of measuring the dynamic material properties of various materials of interest under very high strain rates. Materials property data for various ductile materials (e.g., steel and aluminum) are required as input to f ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
  7. Advanced Outboard Propulsors

    SBC: CORNERSTONE RESEARCH GROUP INC            Topic: N17AT019

    CRG, partnered with the University of Cincinnati (UC), proposes to develop, demonstrate, and deliver drop-in replacement, advanced propulsors and lower units for DoD multi-fuel outboard engines. Optimized to eliminate cavitation, minimize vibration, minimize weight, and maximize efficiency, the propulsors will extend DoD small craft range and endurance, increase speed, and enhance mission capabili ...

    STTR Phase I 2017 Department of DefenseNavy
  8. Advanced Wake Turbulence Modeling for Naval CFD Applications

    SBC: CONTINUUM DYNAMICS INC            Topic: N15AT002

    Predicting the high Reynolds number viscous turbulent flow around realistic aircraft, rotorcraft and ship geometries with CFD is time consuming and computationally expensive, with the number of cells required to resolve the flow driving the computational cost. Even with modern CFD methods, the cost of adequately resolved solutions is prohibitive for most engineering tasks. The team of Continuum Dy ...

    STTR Phase II 2017 Department of DefenseNavy
  9. Advanced Window Materials for High Energy Propulsion

    SBC: CERANOVA CORP            Topic: AF07T009

    Window materials are an essential component of some advanced propulsion concepts which require high pressures, high temperatures, low energy losses, and low weights. Window materials must possess a combination of properties such as high mechanical strength, high melting point, high transparency, low density, and good resistance to the operating environment. CeraNova proposes the development of f ...

    STTR Phase I 2008 Department of DefenseAir Force
  10. Aerospace Vehicle Signature Modeling Technologies

    SBC: GOHYPERSONIC INCORPORATED            Topic: MDA15T003

    The proposed work will incorporate the newly released software into the signature analysis workflow. Extensions of the US3D flow solver will include improvements to the decoupled implicit solver to robustly and efficiently handle reacting flow. Trajectory specification, conjugate vehicle heating, and ablation with surface recession will be enabled through use of a Trajectory Ablation & Shape Chang ...

    STTR Phase I 2017 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government