You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers

    SBC: 3 Phoenix, Inc.            Topic: N08T029

    In the Phase I STTR, N08-T029 “Novel Fiber Optic Methods for Sensing Shape, Orientation and/or Heading of Undersea Arrays and Tethers” a concept was developed for a fiber optic sensing array and shape reconstruction algorithm to be used for situation awareness of flexible undersea cable structures. Undersea cable structures are deployed in environments unsuitable for direct in-situ observation ...

    STTR Phase II 2010 Department of DefenseNavy
  2. A Novel Noninvasive Microwave Sensor for Quantitative Assessment of Degree of Sensitization in Marine Aluminum Alloys

    SBC: ALPHASENSE, INC.            Topic: N09T022

    In phase I, we have proven the feasibility of using the microwave cavity perturbation technique to detect and quantify DoS in marine aluminum alloys. We implemented an alpha version sensor prototype, characterized and validated its performance using ASTM G67 method. We also identified methods to further enhance the sensor sensitivity, so that DoS in the low (a few mg/cm2) to moderate range can be ...

    STTR Phase II 2010 Department of DefenseNavy
  3. Rapid Combustion Driven High Pressure Powder Compaction of Refractory Alloys and Dispersion Strengthened Composites for High Temperature Applications

    SBC: Utron Kinetics LLC            Topic: MDA09T002

    This Phase I STTR effort will be focused on fabricating and scientifically characterizing Mo/Re (59 Mo-41 Re), and W-25Re alloys with other alloying additions such as small % of dispersion strengthening materials such as zirconia, hafnia, tungsten carbide, Hafnium (Hf), Zirconium, TaC, Hf-based carbides in select geometrical shapes using UTRON Kinetics''s innovative, and cost-effective Combustion ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  4. Fast Trajectory Generation in High Fidelity Geopotentials using Finite Elements, Mascons, and Parallelism

    SBC: ANALYTICAL MECHANICS ASSOCIATES, INC.            Topic: AF09BT02

    We propose to investigate the feasibility of obtaining fast and accurate trajectories using global geopotential models representing departures from the two-body plus J2 terms. The proposed geopotential formulations and numerical integration methods rely on multi-core processors and the emerging massive parallel capabilities of Graphics Processing Units (GPUs) available to common personal computer ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. DIPAIN-Based Handheld Assay for the Detection of T-2 Toxin in Water Using a Handheld Reader

    SBC: ANP TECHNOLOGIES INC.            Topic: A10AT021

    A rapid assay for the detection of T2 trichothecene mycotoxin in water is proposed that will use ANP Technology, Inc.'s established handheld reader and rapid acetylcholinesterase (AChE) inhibitor test ticket format. Dipain-II and other candidate Dipain derivatives will be immobilized on cellulose and other solid supports mounted as discs in wells on the existing test ticket, similar to the AChE i ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Automated Blood Component Separator

    SBC: Antek            Topic: A10AT026

    The objective of the proposed research is to develop a portable, passive system for rapid and efficient blood component separation. While a number of macro-scale devices are routinely employed in laboratory settings to separate, for example, red blood cells (RBCs) from platelet-rich plasma (PRP), and an emerging class of microfabricated devices are slowly being developed to address various low-th ...

    STTR Phase I 2010 Department of DefenseArmy
  7. Development of Magnetostrictive Energy Harvesting of Mechanical Vibration Energy

    SBC: Applied Physical Sciences Corp.            Topic: N10AT020

    Applied Physical Sciences and the University of Maryland propose to develop a magnetostrictive transducer that harvests electrical energy from shipboard machinery while simultaneously suppressing vibration to improve the ship’s stealth characteristics and thereby improving the performance of hull mounted sonar systems. Analysis performed during the Base Effort will provide an initial design spec ...

    STTR Phase I 2010 Department of DefenseNavy
  8. External Pipe Sound Pressure Level Sensor

    SBC: Applied Physical Sciences Corp.            Topic: N10AT016

    Applied Physical Sciences (APS) and the Pennsylvania State University Applied Research Laboratory (ARL/PSU) will collaborate in the development of a novel sensor system to measure the low frequency acoustic pressures within a fluid-filled pipe. The proposed concept improves upon the Navy’s current Array Based Acoustic Measurement (ABAM) system for laboratory characterization of full-scale piping ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Micro-sized Microwave Atmospheric Satellite Cluster (MicroMAS)

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: ST092005

    Small satellites working in coordinated manner as part of a distributed constellation hold the promise to revolutionize DoD space operations. However, small satellites also have significant inherent limitations. Their size limits the types of sensors that they can accommodate. It also limits propulsion, power generation and attitude control capabilities. One way of overcoming some of these lim ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  10. Integration of PALACE and Touchdown Planning Methods for Landing CUAS at Unprepared Sites

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: N10AT039

    Aurora Flight Sciences and MIT have been developing tools and techniques that, together with existing 3D environment decision-making and navigation tools developed by AMRDEC in the PALACE program, are well-suited to the problem of autonomous vertical landing on unprepared landing sites. In this program, Aurora will team with MIT researchers and UC Santa Cruz (UCSC licenses PALACE technologies for ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government