You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Modeling of Lithium-Ion Cell Performance

    SBC: GLOBAL TECHNOLOGY CONNECTION, INC.            Topic: MDA10T004

    Global Technology Connection, Inc., in collaboration with academic partners, Georgia Tech"s Center for Innovative Battery and Fuel Cell Technologies, Penn State University, and industrial partner Eagle Picher propose to create a physics-based modeling for predicting the life performance of Low and Middle Earth Orbit (LEO/MEO) Lithium-ion cells. The relationships between solid-electrolyte interpha ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  2. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  3. Development of a Truly Lattice-Matched III-Nitride Technology for

    SBC: CERMET, INC.            Topic: N/A

    Cermet, in collaboration with researchers at Georgia Institute of Technology, proposes to implement a lattice matched III-Nitride technology using existing substrates. The implementation of a lattice matched substrate promises to produce near dislocationfree III-Nitrides for the first time while the use of an existing substrate technology dramatically lowers development cost and reduces the devel ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  4. Improved SiC Materials for High Power Electronics

    SBC: PHOENIX INNOVATION, INC.            Topic: N/A

    Silicon has long been the semiconductor of choice for high-voltage power electronic applications. Recently, SiC has attracted attention because SiC is projected to have better performance than silicon. [1] SiC power switching devices have yet to becommercialized, largely due to SiC crystal defects, most notably the device-killing micropipe defect, which does not permit high total current parts t ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  5. Axial Gradient Index (GRIN) Microlenses for Tunable Wavelength Division Multiplexer with Surface-normal Packaging Configuration

    SBC: RADIANT RESEARCH, INC.            Topic: N/A

    Conventional wave division (de)multiplexers (WD(DM)Ms) fail to provide a universal design enabling the coverage of the large dynamic range of wavelength separations which vary from sub-nm to 30 nm. The packaging designs affiliated with such WD(D)Ms alsomake the systems vulnerable in harsh environments. In this program, Radiant Research, Inc. (RRI), in collaboration with the University of Texas a ...

    STTR Phase II 2001 Department of DefenseMissile Defense Agency
  6. Axial Gradient Index (GRIN) Microlenses for Tunable Wavelength Division Multiplexer with Surface-normal Packaging Configuration

    SBC: RADIANT RESEARCH, INC.            Topic: N/A

    Conventional wave division (de)multiplexers (WD(DM)Ms) fail to provide a universal design enabling the coverage of the large dynamic range of wavelength separations which vary from sub-nm to 30 nm. The packaging designs affiliated with such WD(D)Ms alsomake the systems vulnerable in harsh environments. In this program, Radiant Research, Inc. (RRI), in collaboration with the University of Texas a ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  7. A Tunable Interferometric Random Optical Cross-Switch

    SBC: Scientific Solutions, Inc.            Topic: N/A

    A random access, solid-state, optical cross-switch capable of 770 channel discrimination in the telecommunications C-band is designed and proven as an alternative to current thin-film WDM devices and as a mechanically robust alternative tomicroelectromechanical (MEMS) WDM devices. The device may be used in multiplexing (mux), demultiplexing (demux), or complete cross-switch configurations, and is ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  8. Al(In)GaN/(In)GaN High Electron Mobility Transistors for Low-Noise and High-Power Applications

    SBC: SVT ASSOCIATES INC            Topic: N/A

    AlInGaN-based heterostructures have demonstrated unmatched versatility in optical and electronic applications. In particular, AlGaN/GaN high electron mobility transistors (HEMTs) are the leading candidates for realizing ultra-high frequency, low-noiseand high-power amplifiers. The addition of indium to the composition of these HEMTs is expected to dramatically improve their performance. We prop ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  9. High Speed VCSEL for 1300 nm Optical Network

    SBC: SVT ASSOCIATES INC            Topic: N/A

    Fiber optical transmission is increasingly applied to computer network, secure telecommunication systems, military aircraft, and even in missile guidance systems. 1300 nm vertical cavity surface-emitting lasers (VCSEL) are becoming a prefered technologyfor transceivers in short- and medium-haul, enterprise and metro data network. There is significant interest in using diluted nitride GaInNAs as ac ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  10. Novel heterojunction diodes for High Power Electronics

    SBC: PHOTRONIX            Topic: N/A

    The wide-bandgap semiconductors GaN and SiC hold great promise for high temperature and highpower electronic devices. This is due to the attractive properties these materials possess, such as wide energy bandgaps, high breakdown fields, high thermalconductivities, and high saturated electron velocities. In addition, GaN and SiC have adequate electron mobilities and can readily be doped n and p ty ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government