You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Atomic Layer Deposition of Highly Conductive Metals

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: A17AT001

    Novel photonic structures, such as periodic metal-dielectric photonic bandgap structures (MDPBG) have the potential to revolutionize the field of optical windows. The large mismatch in the permittivities of the metal and dielectric creates resonant tunneling, which allows for high transmission in regions where metals are typically opaque. This property makes MDPBGs very attractive for screening or ...

    STTR Phase I 2017 Department of DefenseArmy
  2. Stacked 2-D Meta-structures for Shielding High-Power Laser Radiation

    SBC: UTILITY DEVELOPMENT CORP            Topic: A17AT003

    The objective will be to investigate novel approaches using multilayered hybrid 2-dimensional nanostructures as passive coatings and evaluate their interactions with high energy lasers. This approach will be applied throughout the entire EM spectra. Simulations will be the main focus and will augment these with preliminary experiments in the visible range. These structured materials will be ...

    STTR Phase I 2017 Department of DefenseArmy
  3. Heterogeneously Integrated Active Laser Sensing Platform on Si

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT005

    We propose to develop highly-sensitive low size, weight, and power (SWaP) chip-scale mid-infrared integrated-optic sensors for trace gas measurements, We will combine Tunable Diode Laser Spectroscopy (TDLAS) detection techniques with narrow-linewidth fast-tuning Distributed Feedback (DFB) Quantum Cascade and Interband Cascade Lasers (QCLs and ICLs) to create a platform for a family of sensors, ea ...

    STTR Phase I 2017 Department of DefenseArmy
  4. Self-Sensing & Self-Healing Composites via Embedded Mechanophores

    SBC: METIS DESIGN CORP            Topic: A17AT009

    Composites are being adopted increasingly in aerospace structures due to their superior specific stiffness and strength, their resistance to fatigue and ability to greatly reduce part count. They present additional challenges for design however, due to their heterogeneity and anisotropy, and for inspection since damage often occurs beneath their surface. Currently successful laboratory non-destru ...

    STTR Phase I 2017 Department of DefenseArmy
  5. Shelf-stable synthetic cannabinoid biosensor

    SBC: Nano Terra, Inc.            Topic: A17AT014

    Nano Terra will collaborate with the Center for Drug Discovery (CDD) at Northeastern University, to develop a sensor capable of detecting synthetic cannabinoids independently of their specific molecular structure. The sensor will be portable, label-free and most-importantly shelf stable. Our proposed sensor will employ a structurally stabilized mutant CB1 receptor as the recognition element in fl ...

    STTR Phase I 2017 Department of DefenseArmy
  6. Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and Aging

    SBC: METNA CO            Topic: A17AT016

    A robust, versatile and portable test system will be developed based on the NMR relaxometry/diffusomtry principles for thorough, reliable, expedient and economical nondestructive evaluation of the polymer/inorganic interface structure and properties. NMR relaxometry/diffusometry probes sensitive volumes that can be moved to scan the interface. This nondestructive test measures a number of paramete ...

    STTR Phase I 2017 Department of DefenseArmy
  7. Biological Agent Detection Network

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT020

    Physical Sciences Inc. in cooperation with University of Notre Dame proposes to develop a method for the persistent surveillance and detection of aerosolized biological warfare agents using a distributed point bioaerosol detector network, local meteorological sensors, existing infrared surveillance cameras, and crowdsourced georeferenced network traffic and phrase monitoring. The proposed technolo ...

    STTR Phase I 2017 Department of DefenseArmy
  8. Anticipatory Analytics for Environmental Stressors

    SBC: ISCIENCES LLC            Topic: A17AT021

    Environmental stresses such as droughts, floods, storms, earthquakes, wildfires, pest infestations, volcanic eruptions, and infectious disease vectors are often key contributing factors to defense interventions, including humanitarian response, counter insurgency, and border control. As a result, early phase military planning activities need to incorporate systematic monitoring and forecasting of ...

    STTR Phase I 2017 Department of DefenseArmy
  9. Real Time Inline Bacteria Detection for Military Mobile Water Treatment System

    SBC: PHYSICAL SCIENCES INC.            Topic: A17AT023

    Physical Sciences Inc., in cooperation with Boston University, proposes to develop an Interferometric Reflectance Imaging Sensor (IRIS) to detect waterborne pathogens including E. coli for use with military mobile water treatment systems. The imaging platform will employ an algorithm to discriminate E. coli based on size/shape analysis concurrent with capture probes with application to multiplexe ...

    STTR Phase I 2017 Department of DefenseArmy
  10. Additive Manufactured Smart Structures with Discrete Embedded Sensors

    SBC: TRITON SYSTEMS, INC.            Topic: A17AT024

    The purpose of this proposal is to additively manufacture (AM) smart structures with embedded electronics such as sensors, accelerometers, antennas, etc. The goal of these smart structures will be to enhance the effectiveness and survivability of the Armys ground systems. The use of additive manufacturing smart structures provides flexibility in the materials used and the functionality of the elec ...

    STTR Phase I 2017 Department of DefenseArmy
US Flag An Official Website of the United States Government