You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Real-Time Health Management Portable Sensor for Solid Rocket Motors

    SBC: PHYSICAL SCIENCES INC.            Topic: MDA14T004

    Physical Sciences Inc. (PSI) proposes to design, develop, and demonstrate a portable, non-invasive, real-time sensor to assess the chemical and physical health of solid rocket motors (SRMs) as a function of age without affecting the motors integrity. In Phase I, a sensor to monitor specific gas species that are markers of the chemical and mechanical aging processes of composite and double base pr ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  2. Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: MDA13T001

    In our Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF) project, we will model the entire multi-sensor fusion process as a probabilistic model and reason about the different design and algorithmic decisions that can be made by system engineers. This fusion model will use standard fusion system representations and ideas from statistical relational learning field to create flexibl ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  3. Uncertainty Characterization Using Copulas (UC)2

    SBC: BOSTON FUSION CORP            Topic: MDA13T001

    Boston Fusion, together with our teammate Syracuse University, propose a program of research and development, Uncertainty Characterization Using Copulas (UC)2, that will result in a parametric framework based on the statistical theory of copulas for modeling uncertainties for the problem of object classification. (UC)2 will produce a mathematical framework, founded on rigorous theoretical analysis ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  4. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  5. Continuous Wave Terahertz Source Photonic Band Engineering

    SBC: AGILTRON, INC.            Topic: BMDO02T00

    The terahertz wave region of the electromagnetic spectrum offers exciting and unique attributes for security imaging and secure broadband communications. However, THz signal generation is difficult and current applications are rare. Existing THz sources utilize large and expensive lasers operating in pulsed mode. Practical application of THz radiation requires the development of THz source techn ...

    STTR Phase II 2004 Department of DefenseMissile Defense Agency
  6. Continuous Wave Terahertz Source Photonic Band Engineering

    SBC: AGILTRON, INC.            Topic: N/A

    The terahertz wave region of the electromagnetic spectrum offers exciting and unique attributes for security imaging and secure broadband communications. However, THz signal generation is difficult and current applications are rare. Existing THz sources utilize large and expensive lasers operating in pulsed mode. Practical application of THz radiation requires the development of THz source techn ...

    STTR Phase I 2004 Department of DefenseMissile Defense Agency
  7. Data Driven Prognostics (Hybrid Nano-scale/Microscale Composites for Deep Thermal Cycle Damage Resistance)

    SBC: Firehole Technologies, Inc.            Topic: N/A

    Programs such as Airborne Laser and Space-Based Laser require highly mass efficient structures. Because of their high specific strength and stiffness this naturally leads to graphite fiber reinforced polymer (GFRP) materials for many system components. In fluid storage tank applications GFRP laminates often develop microcracking when subject to cryogenic temperatures and/or stresses due to press ...

    STTR Phase I 2004 Department of DefenseMissile Defense Agency
  8. Data Driven Prognostics (Hybrid Nano-scale/Microscale Composites for Deep Thermal Cycle Damage Resistance)

    SBC: Firehole Technologies, Inc.            Topic: MDA03T001

    Programs such as Airborne Laser and Space-Based Laser require highly mass efficient structures. Because of their high specific strength and stiffness this naturally leads to graphite fiber reinforced polymer (GFRP) materials for many system components. In fluid storage tank applications GFRP laminates often develop microcracking when subject to cryogenic temperatures and/or stresses due to press ...

    STTR Phase II 2004 Department of DefenseMissile Defense Agency
  9. Superior and Affordable Infrared Windows for High-Speed Missiles

    SBC: FOSTER-MILLER, INC.            Topic: BMDO02T00

    During this Phase II STTR, Foster-Miller will develop Yttria-Alumina-Garnet (YAG) IR windows made by our innovative process and establish a property database to confirm the potential for cost-effectiveness and superior optical and mechanical properties compared to current materials. This YAG is made from a single crystal YAG preform and hot pressed to >99 percent density. Windows made during Ph ...

    STTR Phase II 2004 Department of DefenseMissile Defense Agency
  10. Growth of large-area, single-crystalline AlN substrates (Subtopic A: Electronic Materials)

    SBC: HEXATECH            Topic: N/A

    Teh objective of the proposed work is to develop a process for the fabrication large-area aluminum nitride (AlN) wafers of up to 2" in diameter for III-nitride substrate applications. The growth process is based on a sublimation technique that utilizes adequately prepared SiC wafers as large-area seeds. A multi-step process developed in Phase I will be upscaled to larger area deposition, and will ...

    STTR Phase I 2004 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government