You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY23 is not expected to be complete until September, 2024.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  2. Software Defined Multi-Channel Radar Receivers for X-band Radars

    SBC: MAXENTRIC TECHNOLOGIES LLC            Topic: MDA09T003

    The United States Missile Defense Agency (MDA) is searching for a software-defined multi-channel radar receiver that would provide improved performance and added flexibility over currently deployed radar systems. In response, MaXentric is proposing a system codenamed MASR (Manycore Adaptive Software Radar). The MASR system is composed of a hierarchy of X-band front-ends, high-speed digitizers, F ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  3. Innovative Photonic Time Delay Units for Radar Applications

    SBC: S2 CORPORATION            Topic: MDA08T012

    We aim to build and demonstrate an innovative photonic true time delay solution which alleviates the fundamental problem of cascaded optical switches, and additionally offers several significant benefits. The device uses wideband spatial-spectral (S2) holographic optical memory materials to store and access several broadband time delay gratings. Broadband optical chirps are used to create these ti ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  4. Dynamically Tunable Metamaterial Filters(1001-455)

    SBC: TRITON SYSTEMS, INC.            Topic: MDA08T009

    Triton, together with our academic and industrial partners, proposes to develop and fabricate dynamic filters based on metamaterials. These dynamic filters are being engineered to enhance the efficacy of focal plane arrays used in interceptor sensors, resulting in significant cost savings. The filter will offer a dynamically tunable pass band, which will reject stray light coming in off-wavelen ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  5. Development for Radiation Hardened Advanced Electronic Circuits

    SBC: United Silicon Carbide, Inc.            Topic: MDA09T006

    In response to SBIR topic MDA09-T006, USCI proposes to develop the first medium-level integrated circuit for radiation-tolerant applications. The advanced integrated circuit will be demonstrated based on a novel yet simple design SiC transistor that has the potential to provide a factor of 10X improvement in performance comparison to state-of-the-art. The SiC transistor can be fabricated by a subs ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  6. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  7. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase II 1999 Department of DefenseMissile Defense Agency
  8. Simultaneous Spatial/Spectral Infrared Sensor (SSIRS)

    SBC: I Technology Applications            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  9. Novel AlGaN/GaN Heterojunction Bipolar Transistor with Enhanced p-type Doped Base

    SBC: NZ APPLIED TECHNOLOGIES CORP.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  10. Radiation Hard, Nonvalatile Magnetic RAM Using Novel Magnetic Tunneling-Junction Device on Silicon Semiconductor

    SBC: Spinix Corporation            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government