You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Very Large Area Microchannel Plate Neutron Detectors

    SBC: NOVA SCIENTIFIC INCORPORATED            Topic: 18a

    NOVA Scientific, Inc., teamed with the Electronics Group of Oak Ridge National Laboratory, proposes to construct very large area Microchannel Plate neutron detectors. The applications of these much larger format detectors will serve an exceptionally broad range of government agencies from neutron scattering detectors for DOE to nuclear material panel detectors for NNSA, and ultimately to nuclear m ...

    STTR Phase I 2011 Department of Energy
  2. New Broad Band Rare-Earth-Doped Glasses For Optical Fiber Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre has an idea and evidence for a new family of broadband glasses that break all of Zachariasen's standard accepted rules for glass formation. This family of glasses is based upon the extensive use of multiple glass formers such as SiO2, B2O3, La2O3and P2O5. By employing multiple glass formers in a laser glass, Kigre is able to expand the bandwidth without sacrificing cross section and gain. ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  3. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre's Phase I fiber amplifier development effort demonstrated 10dB of internal gain at 1.54um from 2.2 cm long section of MM-2 erbium ytterbium phosphate fiber amplifier pumped at 980nm. 26dB of gain was also produced from a 8.8com long section of thissame fiber pumped at 1480nm. Mode field image testing of a fiber show this MM-2 fiber to be perfect 1.54um single mode containment match to stan ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  4. Novel Programmable Optical Interconnects for Optoelectronic Packaging

    SBC: NEW SPAN OPTO-TECHNOLOGY, INC.            Topic: N/A

    Optical interconnects are required, for high speed opto-electronic packaged computing systems for fast image data processing for missile interception and target identification. They are also useful for fast access to large intelligent database. However,low cost polymer waveguide optical intercornnects and other waveguide interconnect lines suffer from packaging difficulty of waveguide interconnect ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  5. Improved SiC Materials for High Power Electronics

    SBC: PHOENIX INNOVATION, INC.            Topic: N/A

    Silicon has long been the semiconductor of choice for high-voltage power electronic applications. Recently, SiC has attracted attention because SiC is projected to have better performance than silicon. [1] SiC power switching devices have yet to becommercialized, largely due to SiC crystal defects, most notably the device-killing micropipe defect, which does not permit high total current parts t ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  6. A Tunable Interferometric Random Optical Cross-Switch

    SBC: Scientific Solutions, Inc.            Topic: N/A

    A random access, solid-state, optical cross-switch capable of 770 channel discrimination in the telecommunications C-band is designed and proven as an alternative to current thin-film WDM devices and as a mechanically robust alternative tomicroelectromechanical (MEMS) WDM devices. The device may be used in multiplexing (mux), demultiplexing (demux), or complete cross-switch configurations, and is ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  7. Novel heterojunction diodes for High Power Electronics

    SBC: PHOTRONIX            Topic: N/A

    The wide-bandgap semiconductors GaN and SiC hold great promise for high temperature and highpower electronic devices. This is due to the attractive properties these materials possess, such as wide energy bandgaps, high breakdown fields, high thermalconductivities, and high saturated electron velocities. In addition, GaN and SiC have adequate electron mobilities and can readily be doped n and p ty ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  8. In-Line Trona Fiber-Optic Raman System

    SBC: Detection Limit, Inc.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of Energy
  9. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  10. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government