You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Power, Modulation Doped AlGaN/GaN FETs on Melt Grown, Zinc Oxide Bulk Substrates

    SBC: CERMET, INC.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  2. Development of a Truly Lattice-Matched III-Nitride Technology for

    SBC: CERMET, INC.            Topic: N/A

    Cermet, in collaboration with researchers at Georgia Institute of Technology, proposes to implement a lattice matched III-Nitride technology using existing substrates. The implementation of a lattice matched substrate promises to produce near dislocationfree III-Nitrides for the first time while the use of an existing substrate technology dramatically lowers development cost and reduces the devel ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  3. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  4. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase II 1999 Department of DefenseMissile Defense Agency
  5. High Power Gallium Nitride HEMT Prepared by Ion Implantatio

    SBC: Implant Sciences Corporation            Topic: N/A

    Implant Sciences Corporation proposes to develop a superior power transistor design based on ion implanted nitride semiconductor materials which will be produced at Howard University. Our lateral device design features an inverted GaN channel with the AlGaN charge supply layer doped by ion implantation. Ion implantation allows selective area doping, which will let us create for the first time an u ...

    STTR Phase I 1998 Department of DefenseMissile Defense Agency
  6. Tooling-Free MMC Casting by Combining 3-D Printing of Ceram

    SBC: METAL MATRIX CAST COMPOSITES, LLC (DBA M            Topic: N/A

    Three-dimensional printed preforms will be used as mold patterns for MMCC's high-density, pressure resistant, castable refractory. Hard tooling will be eliminated from the Advanced Pressure Infiltration Casting process (APIC ). Cost for Al/Sic electronic housings will be slashed 75% over conventional pressure casting. Complex parts will be easily manufactured. Design modifications can be quickly i ...

    STTR Phase I 1998 Department of DefenseMissile Defense Agency
  7. Growth of New Wide Band Gap Nitride Semiconductors for Yell

    SBC: NZ APPLIED TECHNOLOGIES CORP.            Topic: N/A

    The goal of the SBIR Phase I proposal is an attempt to grow the world's first single crystalline new wide band gap nitride semiconductors by MOCVD for developing optoelectronic and optical devices in yellow to green visible band as well as lattice matched heterostructure wide band gap electronic devices. The expected direct transition, wide band gap electronic structure and the significant nonline ...

    STTR Phase I 1998 Department of DefenseMissile Defense Agency
  8. Novel AlGaN/GaN Heterojunction Bipolar Transistor with Enhanced p-type Doped Base

    SBC: NZ APPLIED TECHNOLOGIES CORP.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  9. Improved SiC Materials for High Power Electronics

    SBC: PHOENIX INNOVATION, INC.            Topic: N/A

    Silicon has long been the semiconductor of choice for high-voltage power electronic applications. Recently, SiC has attracted attention because SiC is projected to have better performance than silicon. [1] SiC power switching devices have yet to becommercialized, largely due to SiC crystal defects, most notably the device-killing micropipe defect, which does not permit high total current parts t ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  10. Composite Case Improvement for Solid Rocket Motor

    SBC: PHYSICAL SCIENCES INC.            Topic: MDA06T004

    It is proposed to develop, model, and demonstrate composite case materials with sympathetic responses to slow cookoff. In phase II, the proposed study will focus upon conducting subscale SCO testing on composite case materials and validate a physics based modeling and simulation tool. Subscale motor case dimensions will be analogue to a specific MDA rocket booster.

    STTR Phase II 2007 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government