You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. An Embedded Health Monitoring System for Determining Readiness of Electronic Components

    SBC: NOKOMIS INC            Topic: MDA14T001

    Nokomis ultra-sensitive radio frequency (RF) sensor, the Hiawatha System, can leverage changes in unintended emissions signatures to monitor the overall state of electronic device health. As a device ages, emissions signatures change in a predictable and deterministic manner, enabling reliable determination of device readiness. Under this effort, Nokomis proposes to leverage hand-held embedded h ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  2. Real-Time Health Management Portable Sensor for Solid Rocket Motors

    SBC: PHYSICAL SCIENCES INC.            Topic: MDA14T004

    Physical Sciences Inc. (PSI) proposes to design, develop, and demonstrate a portable, non-invasive, real-time sensor to assess the chemical and physical health of solid rocket motors (SRMs) as a function of age without affecting the motors integrity. In Phase I, a sensor to monitor specific gas species that are markers of the chemical and mechanical aging processes of composite and double base pr ...

    STTR Phase I 2015 Department of DefenseMissile Defense Agency
  3. Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: MDA13T001

    In our Adaptive Management and Mitigation of Uncertainty in Fusion (AMMUF) project, we will model the entire multi-sensor fusion process as a probabilistic model and reason about the different design and algorithmic decisions that can be made by system engineers. This fusion model will use standard fusion system representations and ideas from statistical relational learning field to create flexibl ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  4. Uncertainty Characterization Using Copulas (UC)2

    SBC: BOSTON FUSION CORP            Topic: MDA13T001

    Boston Fusion, together with our teammate Syracuse University, propose a program of research and development, Uncertainty Characterization Using Copulas (UC)2, that will result in a parametric framework based on the statistical theory of copulas for modeling uncertainties for the problem of object classification. (UC)2 will produce a mathematical framework, founded on rigorous theoretical analysis ...

    STTR Phase II 2015 Department of DefenseMissile Defense Agency
  5. Modeling of Lithium-Ion Cell Performance

    SBC: GLOBAL TECHNOLOGY CONNECTION, INC.            Topic: MDA10T004

    Global Technology Connection, Inc., in collaboration with academic partners, Georgia Tech"s Center for Innovative Battery and Fuel Cell Technologies, Penn State University, and industrial partner Eagle Picher propose to create a physics-based modeling for predicting the life performance of Low and Middle Earth Orbit (LEO/MEO) Lithium-ion cells. The relationships between solid-electrolyte interpha ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  6. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  7. Missile Plume Simulation Improvements Using GPU Chemical Kinetics Coprocessors

    SBC: COMBUSTION RESEARCH & FLOW TECHNOLOGY INC            Topic: MDA05T018

    High-fidelity missile plume flowfield simulations of MDA interest require use of detailed chemical kinetic mechanisms, which significantly improve IR/UV/RCS/visible signature prediction but entail long solution runtimes for completion. These long runtimes result from the required iterative solution of large systems of stiff, non-linear chemical source terms at each CFD mesh point; this curtails t ...

    STTR Phase I 2005 Department of DefenseMissile Defense Agency
  8. Stratospheric Electrical Environments Applicable To Photovoltaic Arrays On HAA Platforms

    SBC: LIGHTNING TECHNOLOGIES, INC.            Topic: MDA04T008

    The objective of this program is to characterize the upper atmosphere electrical environment so that the effects of this environment on high altitude airships (HAA) and other platforms intending to operate in this environment can be determined, and protection methods developed. This includes transient luminous events (TLEs), such as red sprites and blue jets and their associated electrical propert ...

    STTR Phase II 2005 Department of DefenseMissile Defense Agency
  9. Design and Development of Radiation Hardened ROIC for Multi-color LWIR/VLWIR Focal Plane Arrays

    SBC: MAGNOLIA OPTICAL TECHNOLOGIES, INC.            Topic: MDA05T009

    Radiation Hardened Multi-color infrared (IR) focal planes are required for MDA/SMDC systems applications . Key to meeting these system requirements is to develop multi-color radiation hardened HgCdTe focal plane arrays for LWIR band ( 7-14 microns) and VLWIR band with wavelength of greater than 14 microns with high pixel uniformity, reduced readout noise, improved resolution, and higher temperatur ...

    STTR Phase I 2005 Department of DefenseMissile Defense Agency
  10. PROPULSION MATERIALS MODELING TO IMPROVE PERFORMANCE AND REDUCE COST

    SBC: MATERIALS RESEARCH & DESIGN INC            Topic: MDA05T002

    MDA is developing materials for several applications including hypersonic missiles, ma-neuvering reentry vehicles, advanced solid rocket motors, and divert and attitude control sys-tems. All of these applications employ components that must operate at temperatures above 3000°F. Viable structural materials for these conditions can be loosely grouped as graphite, ce-ramics (e.g. oxides, carbides) ...

    STTR Phase I 2005 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government