Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  2. N/A

    SBC: Electron Power Systems, Inc.            Topic: N/A

    N/A

    STTR Phase II 1999 Department of DefenseMissile Defense Agency
  3. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
  4. New Rare-Earth-Doped Glasses for Planar Waveguide Lasers & Amplifiers

    SBC: KIGRE, INC.            Topic: MDA96T002

    This STTR Phase II project continues the development of a new glass (designated MM-i) for ion-exchange glass waveguides and amplifiers used in l.55 um optical communication systems. There is excellent commercial potential for these glass materials and the waveguide lasers (lossless splitters) and optical amplifiers that may be fabricated from them. To date, development efforts in the communication ...

    STTR Phase II 2005 Department of DefenseMissile Defense Agency
  5. New Broad Band Rare-Earth-Doped Glasses For Optical Fiber Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre has an idea and evidence for a new family of broadband glasses that break all of Zachariasen's standard accepted rules for glass formation. This family of glasses is based upon the extensive use of multiple glass formers such as SiO2, B2O3, La2O3and P2O5. By employing multiple glass formers in a laser glass, Kigre is able to expand the bandwidth without sacrificing cross section and gain. ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  6. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre's Phase I fiber amplifier development effort demonstrated 10dB of internal gain at 1.54um from 2.2 cm long section of MM-2 erbium ytterbium phosphate fiber amplifier pumped at 980nm. 26dB of gain was also produced from a 8.8com long section of thissame fiber pumped at 1480nm. Mode field image testing of a fiber show this MM-2 fiber to be perfect 1.54um single mode containment match to stan ...

    STTR Phase II 2001 Department of DefenseMissile Defense Agency
  7. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre's Phase I fiber amplifier development effort demonstrated 10dB of internal gain at 1.54um from 2.2 cm long section of MM-2 erbium ytterbium phosphate fiber amplifier pumped at 980nm. 26dB of gain was also produced from a 8.8com long section of thissame fiber pumped at 1480nm. Mode field image testing of a fiber show this MM-2 fiber to be perfect 1.54um single mode containment match to stan ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  8. Stratospheric Electrical Environments Applicable To Photovoltaic Arrays On HAA Platforms

    SBC: LIGHTNING TECHNOLOGIES, INC.            Topic: MDA04T008

    The objective of this program is to characterize the upper atmosphere electrical environment so that the effects of this environment on high altitude airships (HAA) and other platforms intending to operate in this environment can be determined, and protection methods developed. This includes transient luminous events (TLEs), such as red sprites and blue jets and their associated electrical propert ...

    STTR Phase II 2005 Department of DefenseMissile Defense Agency
  9. Design and Development of Radiation Hardened ROIC for Multi-color LWIR/VLWIR Focal Plane Arrays

    SBC: Magnolia Optical Technologies, Inc.            Topic: MDA05T009

    Radiation Hardened Multi-color infrared (IR) focal planes are required for MDA/SMDC systems applications . Key to meeting these system requirements is to develop multi-color radiation hardened HgCdTe focal plane arrays for LWIR band ( 7-14 microns) and VLWIR band with wavelength of greater than 14 microns with high pixel uniformity, reduced readout noise, improved resolution, and higher temperatur ...

    STTR Phase I 2005 Department of DefenseMissile Defense Agency
  10. Novel AlGaN/GaN Heterojunction Bipolar Transistor with Enhanced p-type Doped Base

    SBC: NZ APPLIED TECHNOLOGIES CORP.            Topic: N/A

    N/A

    STTR Phase I 1999 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government