Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY19 is not expected to be complete until June, 2020.

  1. Deep Inference and Fusion Framework Utilizing Supporting Evidence (DIFFUSE)

    SBC: Boston Fusion Corp.            Topic: MDA15T001

    Combining information from disparate sensors can lead to better situational awareness and improved inference performance; unfortunately, traditional multi-sensor fusion cannot capture complex dependencies among different objects in a scene, nor can it exploit context to further boost performance. Integrating context information within a fusion architecture to reason cohesively about scenes of inte ...

    STTR Phase I 2016 Department of DefenseMissile Defense Agency
  2. Real-Time Health Management Portable Sensor for Solid Rocket Motors

    SBC: Physical Sciences Inc.            Topic: MDA14T004

    Physical Sciences Inc. (PSI) proposes to design, develop, and demonstrate a portable, non-invasive, real-time sensor to assess the chemical and physical health of solid rocket motors as a function of age without affecting the motors integrity nor having direct contact with the propellant. In Phase II, a sensor to monitor specific gas species that are markers of the chemical and mechanical aging pr ...

    STTR Phase II 2016 Department of DefenseMissile Defense Agency
  3. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  4. The Use of Hydrogen for Defect Reduction in Large Format Infrared Detector Materials

    SBC: Amethyst Research Incorporated            Topic: MDA11T002

    Active defects negatively impact the performance of IRFPAs by increasing noise at various levels up to, and including, catastrophic degradation. Evidence indicates that"killer defects"are related to the interaction of open core screw dislocations with impurities that remain after substrate preparation, prior to HgCdTe growth. This impurity diffusion creates a conducting channel that shorts the j ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  5. High Operability HgCdTe Focal Plane Arrays on Si by Mitigation of Defects

    SBC: Amethyst Research Incorporated            Topic: MDA11T002

    For HgCdTe infrared focal plane arrays fabricated on Si substrates, a model has recently been proposed to account for the disparity between the density of failed pixels and the density of dislocations that are present in the HgCdTe junction region. The model distinguishes between active and inactive dislocations and offers a hypothesis that dislocations are active only when they intersect particul ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  6. Defect Reduction at the Silicon (112) Wafer Surface by Amorphization and Recrystallization

    SBC: Amethyst Research Incorporated            Topic: MDA11T002

    Silicon wafers oriented on (112) are the preferred substrates for deposition of mercury cadmium telluride layers by molecular beam epitaxy. Surface defects introduced during polishing of the wafers degrade the quality of the epitaxy and the performance of infrared detectors fabricated within these materials. We propose a process for reducing the density of the defects that are inherent in the si ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  7. Innovative Photonic Time Delay Units for Radar Applications

    SBC: S2 CORPORATION            Topic: MDA08T012

    We aim to build and demonstrate an innovative photonic true time delay solution which alleviates the fundamental problem of cascaded optical switches, and additionally offers several significant benefits. The device uses wideband spatial-spectral (S2) holographic optical memory materials to store and access several broadband time delay gratings. Broadband optical chirps are used to create these ti ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  8. AlInN/GaN HFET over Free-Standing bulk GaN substrates

    SBC: Sensor Electronic Technology, Inc.            Topic: MDA09T001

    SET, Inc. proposes to develop lattice-matched AlInN/GaN HFET structure on free-standing GaN substrate. By employing native low-defect GaN substrates and by using lattice-matched heterostructures with the incorporation of indium, we expect dramatic enhancement of these HFET in power density, reliability and high frequency operation. Homoepitaxial growth on native substrate and the use of AlInN/GaN ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  9. Dynamically Tunable Metamaterial Filters(1001-455)

    SBC: Triton Systems, Inc.            Topic: MDA08T009

    Triton, together with our academic and industrial partners, proposes to develop and fabricate dynamic filters based on metamaterials. These dynamic filters are being engineered to enhance the efficacy of focal plane arrays used in interceptor sensors, resulting in significant cost savings. The filter will offer a dynamically tunable pass band, which will reject stray light coming in off-wavelen ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  10. Advanced Infrared (IR) Sensor Components for Missile Defense

    SBC: Nanolight, Inc.            Topic: MDA06T011

    The objective of this proposal is to further develop IV-VI PbSnSe detectors epitaxially grown on Si substrates. The motivation of fabricating IV-VI detector arrays on Si is based on the following advantages of IV-VI Pb-salt semiconductors. (1) The large dielectric constant helps screen and localize the defect related effects. (2) The epitaxial material on Si is highly uniform, and thus the cutoff ...

    STTR Phase II 2007 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government