You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. High Hesitivity Magnetic Materials for Magnetic Toroid and Flat Dipole Antennas

    SBC: WINCHESTER TECHNOLOGIES LLC            Topic: N16AT001

    Novel approaches are needed to improve the performance and reduce the size, number and signature of antennas with significantly enhanced efficiency in HF-UHF. It has been shown recently hesitivity, which is able to characterize the performance of the material and categorize the radiation efficiency of magnetodielectric wire antennas; the higher the hesitivity, the higher the attainable antenna eff ...

    STTR Phase I 2016 Department of DefenseNavy
  2. High Hesitivity Magnetic Materials for Magnetic Toroid and Flat Dipole Antennas

    SBC: JEM ENGINEERING, LLC            Topic: N16AT001

    In our Phase I program, JEM and ASU will demonstrate a low cost manufacturing process to achieve the full theoretical hesitivity of a magnetic film that would enable greater effective hesitivity laminate. In Phase II we will develop a viable continuous process for two such materials to achieve light weight, low cost, and improved radiation efficiency; and we will seek to productize this process to ...

    STTR Phase I 2016 Department of DefenseNavy
  3. System to Evaluate and Assess Holistic Aircrew Workload (SEAHAWK)

    SBC: CHARLES RIVER ANALYTICS, INC.            Topic: N16AT002

    The Navy is continually developing new technologies to improve warfighting effectiveness. These technologies risk overloading Aircrews physical and cognitive capacities, thereby degrading performance. To mitigate that risk, the Navy needs a system to assess Aircrews physical and cognitive workloads unobtrusively and objectively. Such a system must (1) perform real-time data collection in a robust ...

    STTR Phase I 2016 Department of DefenseNavy
  4. TOME: Tools for Objective Measurement and Evaluation

    SBC: APTIMA INC            Topic: N16AT002

    The introduction of new systems and technologies is critical for maintaining superiority, yet this brings with it uncertainty regarding the impact on users, teams, and organizations. Rigorous test and evaluation (T&E) practices are therefore essential prior to acquiring and instituting new technologies, particularly to assess the workload imposed on end users. Traditionally, workload assessment ha ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Durable, Low Friction Coatings For Air Cycle Machine Foil Bearings

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: N16AT005

    Technology Assessment and Transfer will demonstrate the potential of novel, low friction and low wear coatings that are capable of providing long term durability for air cycle machine foil bearings. A systematic approach with a high probability of success includes the following: unique low friction, wear resistant alloys and lubricating ceramic composites, magnetron sputtering, the ideal method fo ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Perovskite Solar Cells

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: N16AT006

    The goal of the proposed research is to develop light-weight, flexible, high efficiency solar cells made from perovskite halide light-harvesting materials for use on unmanned aircraft systems (UAS), for use in conjunction with an energy storage system. Solar cells have historically been heavy, costly, and inflexible. In this research, low-cost manufacturing methods will be used to make high effici ...

    STTR Phase I 2016 Department of DefenseNavy
  7. Additive Manufacturing for Microwave Vacuum Electron Device Cost Reduction

    SBC: DISRUPTIVE TECHNOLOGY ASSOCIATES LTD            Topic: N16AT010

    Disruptive Technology Associates will develop additive manufacturing (3-D printing) techniques for microwave vacuum electronics that will change the supply chain, allowing vacuum electronics units to be built with lower overall cost while supporting a sporadic ordering cycle. The Phase I program address several key material and materials integration risk areas. The program will assess several type ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Cyber Forensic Tool Kit for Machinery Control

    SBC: Intelligent Automation, Inc.            Topic: N16AT013

    For machinery control systems, forensics is a vital part to provide a cyber-protection strategy and aid in identification and troubleshooting of system malfunctions due to malicious and non-malicious events. A number of unique challenges exist for the forensic analysis of SCADA based systems. Components of a SCADA system are often resource constrained. In addition, SCADA based systems have a criti ...

    STTR Phase I 2016 Department of DefenseNavy
  9. Reduced Cost, Repeatable, Improved Property Washout Tooling for Composite Fabrication

    SBC: ADVANCED CERAMICS MANUFACTURING, LLC            Topic: N16AT015

    Advanced Ceramics Manufacturing (ACM) has developed several generations of proprietary soluble tooling systems that address the composite industrys need for water soluble tooling. These systems have been engineered via a combination of low CTE ceramic fillers soluble binders. ACM and its University research partner (Oklahoma State University) will reengineer the filler-binder system and manufactur ...

    STTR Phase I 2016 Department of DefenseNavy
  10. Computational Methods for Dynamic Scene Reconstruction

    SBC: ROBOTIC RESEARCH OPCO LLC            Topic: N16AT017

    Reconstruction of dynamic scenes is at the limits of the state of the art. It is still challenging to accurately reconstruct models in static scenes. Dynamic scenes add a list of challenges that further complicate the problem:separating the dynamic objects from the motion created by the camera motionMorphological changes to the dynamic object itself. Not only is the system moving, but it is actual ...

    STTR Phase I 2016 Department of DefenseNavy
US Flag An Official Website of the United States Government