You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Modeling of Lithium-Ion Cell Performance

    SBC: GLOBAL TECHNOLOGY CONNECTION, INC.            Topic: MDA10T004

    Global Technology Connection, Inc., in collaboration with academic partners, Georgia Tech"s Center for Innovative Battery and Fuel Cell Technologies, Penn State University, and industrial partner Eagle Picher propose to create a physics-based modeling for predicting the life performance of Low and Middle Earth Orbit (LEO/MEO) Lithium-ion cells. The relationships between solid-electrolyte interpha ...

    STTR Phase I 2011 Department of DefenseMissile Defense Agency
  2. High-Speed Three-Channel Photonic Time Delay Unit

    SBC: AGILTRON, INC.            Topic: MDA08T012

    An innovative, super-miniature, fast-switching array-based photonic time delay device is being developed for the active electronically scanned-array (AESA) MDA and Navy radars. The design is based on the fast electro-optic effect, the super miniature fiber-lens collimation array, and the existing WDM photonic true time delay technologies. In Phase I Agiltron has successfully demonstrated the core ...

    STTR Phase II 2011 Department of DefenseMissile Defense Agency
  3. Innovative Photonic Time Delay Units for Radar Applications

    SBC: S2 CORPORATION            Topic: MDA08T012

    We aim to build and demonstrate an innovative photonic true time delay solution which alleviates the fundamental problem of cascaded optical switches, and additionally offers several significant benefits. The device uses wideband spatial-spectral (S2) holographic optical memory materials to store and access several broadband time delay gratings. Broadband optical chirps are used to create these ti ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  4. AlInN/GaN HFET over Free-Standing bulk GaN substrates

    SBC: Sensor Electronic Technology, Inc.            Topic: MDA09T001

    SET, Inc. proposes to develop lattice-matched AlInN/GaN HFET structure on free-standing GaN substrate. By employing native low-defect GaN substrates and by using lattice-matched heterostructures with the incorporation of indium, we expect dramatic enhancement of these HFET in power density, reliability and high frequency operation. Homoepitaxial growth on native substrate and the use of AlInN/GaN ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  5. Dynamically Tunable Metamaterial Filters(1001-455)

    SBC: TRITON SYSTEMS, INC.            Topic: MDA08T009

    Triton, together with our academic and industrial partners, proposes to develop and fabricate dynamic filters based on metamaterials. These dynamic filters are being engineered to enhance the efficacy of focal plane arrays used in interceptor sensors, resulting in significant cost savings. The filter will offer a dynamically tunable pass band, which will reject stray light coming in off-wavelen ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  6. Low Cost, High Performance Transmit/Receive Integrated Circuits on a Single Chip

    SBC: Versaq            Topic: MDA09T004

    In the proposed effort we plan to build a fully-operational X-band T/R Integrated Circuit. One of the key-elements to building a fully operational radar is the requisite RF electronics that feed to each antenna element. Historically, radar transmit/receive (T/R) modules have been implemented as complex, multi-chip GaAs MMICs, resulting in very high cost per T/R module, high launch weight, and high ...

    STTR Phase I 2010 Department of DefenseMissile Defense Agency
  7. Development of a Truly Lattice-Matched III-Nitride Technology for

    SBC: CERMET, INC.            Topic: N/A

    Cermet, in collaboration with researchers at Georgia Institute of Technology, proposes to implement a lattice matched III-Nitride technology using existing substrates. The implementation of a lattice matched substrate promises to produce near dislocationfree III-Nitrides for the first time while the use of an existing substrate technology dramatically lowers development cost and reduces the devel ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  8. New Broad Band Rare-Earth-Doped Glasses For Optical Fiber Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre has an idea and evidence for a new family of broadband glasses that break all of Zachariasen's standard accepted rules for glass formation. This family of glasses is based upon the extensive use of multiple glass formers such as SiO2, B2O3, La2O3and P2O5. By employing multiple glass formers in a laser glass, Kigre is able to expand the bandwidth without sacrificing cross section and gain. ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
  9. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre's Phase I fiber amplifier development effort demonstrated 10dB of internal gain at 1.54um from 2.2 cm long section of MM-2 erbium ytterbium phosphate fiber amplifier pumped at 980nm. 26dB of gain was also produced from a 8.8com long section of thissame fiber pumped at 1480nm. Mode field image testing of a fiber show this MM-2 fiber to be perfect 1.54um single mode containment match to stan ...

    STTR Phase II 2001 Department of DefenseMissile Defense Agency
  10. New Rare-Earth-Doped Glass Fiber Lasers and Amplifiers for 1.54 um Communications

    SBC: KIGRE, INC.            Topic: N/A

    Kigre's Phase I fiber amplifier development effort demonstrated 10dB of internal gain at 1.54um from 2.2 cm long section of MM-2 erbium ytterbium phosphate fiber amplifier pumped at 980nm. 26dB of gain was also produced from a 8.8com long section of thissame fiber pumped at 1480nm. Mode field image testing of a fiber show this MM-2 fiber to be perfect 1.54um single mode containment match to stan ...

    STTR Phase I 2001 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government