You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Real Time 3-D Modeling and Immersive Visualization for Enhanced Soldier Situation Awareness

    SBC: Carnegie Robotics LLC            Topic: A12aT003

    We propose a rapid mapping and 3-D visualization system especially suited for inside buildings, tunnels, urban canyons, and other environments where GPS may be poor or not available. The system--which was fully demonstrated in our Phase I effort-- includes mobile Sensor Nodes that wirelessly supply compressed 3D range data and color imagery to a central Fusion Node. The Fusion Node runs 3D recon ...

    STTR Phase II 2014 Department of DefenseArmy
  2. Bio-Inspired Visual Navigation: From Landmarks via Bearing to Controls

    SBC: Intelligent Automation, Inc.            Topic: A12aT030

    The proposed Bio-Inspired Visual Navigation System will enable UGVs to operate semi-autonomously with minimal input from an operator even in degraded communication environments. Semi-autonomous landmark-based navigation in low-texture indoor environments is difficult due to the lack of distinctive micro-features needed by conventional algorithms such as SIFT and SURF. In Phase I, Intelligent Aut ...

    STTR Phase II 2014 Department of DefenseArmy
  3. Ultra-Coherent Semiconductor Laser Technology

    SBC: Morton Photonics Incorporated            Topic: A14AT005

    In this STTR program, technology created at the University of California at Santa Barbara (UCSB) to fabricate silicon photonics based integrated laser devices, including wafer bonded gain elements, will be utilized to develop ultra-coherent integrated laser devices that are widely tunable. Novel laser designs developed by Morton Photonics, taking advantage of ultra-low loss microresonator based f ...

    STTR Phase I 2014 Department of DefenseArmy
  4. Powerful Source of Collimated Coherent Infrared Radiation with Pulse Duration Fewer than Ten Cycles

    SBC: N.P. PHOTONICS, INC.            Topic: A14AT006

    Few-cycle mid-infrared lasers are highly demanded for a variety of practical applications. NP Photonics and University of Arizona propose to develop a wavelength tunable and power-scalable optical parametric laser system at 8-12 micron capable of producing collimated few-cycle pulses with pulse energy>100 microJoule. In this phase I program, we will design the whole laser system and do a feasibil ...

    STTR Phase I 2014 Department of DefenseArmy
  5. Two-Dimensional MoS2 Transistors for Low-Power RF Applications

    SBC: N5 SENSORS INC            Topic: A14AT008

    The proposed project will demonstrate high-frequency (0.5 5 GHz) operation of novel 2-dimensional semiconductor molybdinum disulphide (MoS2) based field-effect transistors. Our project will focus on innovative growth startegies for large-area growth of MoS2 along with novel device design methodologies which will consider the tradeoffs between monolayer and multilayer device designs for high-frequ ...

    STTR Phase I 2014 Department of DefenseArmy
  6. Circadian Rhythm Monitoring and Regulation Device (CMR)

    SBC: Intelligent Automation, Inc.            Topic: A14AT009

    The Department of Defense is concerned with circadian rhythm misalignments as they are known to affect judgment, psychomotor skills, and can lead to Post-Traumatic Stress Disorder (PTSD). At present, there is no comprehensive unobtrusive and easy-to-use solution that measures the circadian misalignment and automatically administers the appropriate therapy for realignment of circadian rhythm. Intel ...

    STTR Phase I 2014 Department of DefenseArmy
  7. Technology to Regulate Circadian Rhythm for Health and Performance

    SBC: BRAIN STATE TECHNOLOGIES LLC            Topic: A14AT009

    We propose a wearable, dual-use neurotechnology device. The Personal Brainwave Headband, driven by tablet or smartphone, is designed for noninvasive closed-loop acoustic stimulation, to permit improved circadian regulation. It will measure brain electrical activity from scalp overlying four key sectors of cortex, perform high-resolution spectral analysis of the signals, and use software algorith ...

    STTR Phase I 2014 Department of DefenseArmy
  8. Freeze Casting of Tubular Sulfur Tolerant Materials for Solid Oxide Fuel Cells

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: A14AT011

    This STTR project seeks to overcome the performance limitations of experimental sulfur tolerant SOFC materials by combining two elements of efficient SOFC design: 1) micro-tubular arrays (OD

    STTR Phase I 2014 Department of DefenseArmy
  9. Terrain Aware Mobility Planning (TAMP)

    SBC: ROBOTIC RESEARCH OPCO LLC            Topic: A14AT018

    Robotic Research, LLC and Jet Propulsion Laboratory (JPL) at the California Institute of Technology are teaming their efforts under the Army STTR topic A14A-T018"Intelligent Terrain-Award Navigation and Mobility of Unmanned Ground Vehicles Operating Under Varying Degrees of Autonomy"to develop an unmanned terrain-aware navigation and mobility system that would enhance soft soil mobility and reduce ...

    STTR Phase I 2014 Department of DefenseArmy
  10. Wavelength Specific Dielectric Obscurants using Electromagnetically Engineered Nanoparticles

    SBC: LUMILANT, INC.            Topic: A13AT016

    As infrared (IR) electo-optical sensors improve in both availability and quality a strong need exists to have comparable improvements in the performance of military obscurants within the IR band. Conventional approaches for creating effective IR obscurants have relied primarily on shaped metal particles with high aspect ratios (e.g. rods, flakes).

    STTR Phase II 2014 Department of DefenseArmy
US Flag An Official Website of the United States Government