You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Accelerated Radiation Susceptibility Analysis and Prediction (RadSAP) Tool

    SBC: DFR SOLUTIONS, LLC            Topic: DTRA162006

    "The increasing complexity of devices, reduced budgets and accelerated program timelines, requires a new approach to predicting radiation of integrated circuit (IC) designs. Most approaches to date require gate level analysis and do not scale easily to device level calculations, leading to methods that are not practical under most program timeline and cost budgets. Previously, DfR Solutions has ...

    SBIR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  2. Lithography Cost Reduction for Rad Hard Integrated Circuits

    SBC: SILICON TECHNOLOGIES, INC.            Topic: DTRA143008

    The DoD faces mounting costs for integrated circuits built with advanced technology. Our proposal addresses mixed-signal ASIC design costs and fabrication costs, notably photomask costs and photolithography costs. The ADONIS 1D design methodology has been demonstrated at technologies ranging from 130nm to 16nm. In Phase I of the program, we used ADONIS to design a reference circuit a high-speed c ...

    SBIR Phase II 2017 Department of DefenseDefense Threat Reduction Agency
  3. Novel Mixed-mode TCAD-Commercial PDK Integrated Flow for Radiation Hardening By Design

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA16A003

    Cost-effective application of advanced commercial electronics technologies in DoD space systems requires early development of radiation-hardened-by-design (RHBD) techniques, and use of simulations is critical to the efficiency of this process. CFDRC has developed an integrated, mixed-mode simulation approach allowing their NanoTCAD device physics simulator to interface with commercial circuit simu ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  4. Compact Laser Drivers for Photoconductive Semiconductor Switches (16-RD-863)

    SBC: UES INC            Topic: DTRA16A004

    Compact Electromagnetic Pulse Module (EMP) capable of being arranged in series-parallel planar or cylindrical arrays is needed to simulate nuclear weapon effects. High gain optically triggered photoconductive semiconductor switches (PCSS) based on Gallium arsenide (GaAs) with low timing jitter enables the development of planar or phased arrays of modular EMP or High Power Microwave (HPM) sources. ...

    STTR Phase I 2017 Department of DefenseDefense Threat Reduction Agency
  5. Production of Inactivated Vaccines Using Supralethal Irradiation

    SBC: BIOLOGICAL MIMETICS, INC.            Topic: DTRA14B002

    The discovery and commercial development of licensed vaccines often take many years of research followed by years of pre-clinical and clinical development. We propose to assess the feasibility of using a novel irradiation-inactivation technology to develop vaccines more rapidly. The technology utilizes a manganese-peptide complex to protect antigenic proteins from ionizing radiation while allowing ...

    STTR Phase II 2017 Department of DefenseDefense Threat Reduction Agency
  6. Characterization and Mitigation of Radiation Effects in Quantum Dot Based Nanotechnologies

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA082001

    For applications in DoD satellite systems, devices based on novel nanomaterials offer significant advantages over traditional technologies in terms of light-weight and efficiency. Examples of such novel devices include quantum dot (QD) based solar cells, photodetectors, radars and sensors. However, the response of these devices to radiation effects is not well understood, and radiation effects mod ...

    SBIR Phase II 2010 Department of DefenseDefense Threat Reduction Agency
  7. Characterization and Mitigation of Radiation Effects in Nonplanar Nano-technology Microelectronics

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA092001

    Future high-performance integrated circuits in DoD satellite systems will require non-planar nano-technology devices, such as MultiGate Field Effect Transistors (MuGFET) or FinFET, which can decrease pattern area of logic circuits below 50% of the conventional planar technologies. The International Technology Roadmap for Semiconductors predicts that such devices will be the cornerstone of sub-32nm ...

    SBIR Phase I 2010 Department of DefenseDefense Threat Reduction Agency
  8. An Integrated, Electrokinetics-Augmented Microfluidic Device for Forensic DNA Analysis

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA092003

    The use of WMDs and IEDs by covert insurgents and terrorists poses a significant risk to U.S. military forces and civilians. The capability to execute rapid forensic DNA analysis to identify individuals who manufactured and transported these threatening devices is of paramount importance to military mission, homeland security and civilian safety. Current DNA forensic analyses are time-consuming, b ...

    SBIR Phase I 2010 Department of DefenseDefense Threat Reduction Agency
  9. Electrokinetic-based Microfluidic Universal Sample-Preparation (EMUS) Platform

    SBC: CFD RESEARCH CORPORATION            Topic: DTRA092002

    Sample preparation has been recognized as the single most important challenge to be faced in the development of detect-to-warn (DTW) systems. Available commercial sample preparation technologies are expensive, slow, and require trained laboratory technicians and sophisticated laboratory equipment for operation. Addressing this need, we propose to design, fabricate, and demonstrate a general purpos ...

    SBIR Phase I 2010 Department of DefenseDefense Threat Reduction Agency
  10. Next Generation Blast Simulation

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: DTRA092015

    With the current state of world events, the threat of explosives used against high-value targets is more pronounced than ever before. As a result, simulation of blast events and their effects on structures has become an increasingly vital capability. Current blast simulations on Central Processing Units (CPU) resources require a significant amount of computational time, limiting their overall valu ...

    SBIR Phase I 2010 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government