You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

Displaying 1 - 10 of 6140 results
  1. High SYmmetric PowER (HYPER) Battery

    SBC: TYFAST ENERGY CORP            Topic: 1

    This proposal aims to rethink the fundamental design of a high-power lithium-ion battery to realize the combined properties of high energy density, ultrafast charging and long cycle life. The team of Tyfast, 2matls, SpectraPower and UC San Diego have demonstrated electrode breakthroughs, experience in designing fast-charging batteries and use of novel electrolytes to deliver a battery cell exceedi ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  2. High SYmmetric PowER (HYPER) Battery

    SBC: TYFAST ENERGY CORP            Topic: 1

    This proposal aims to rethink the fundamental design of a high-power lithium-ion battery to realize the combined properties of high energy density, ultrafast charging and long cycle life. The team of Tyfast, 2matls, SpectraPower and UC San Diego have demonstrated electrode breakthroughs, experience in designing fast-charging batteries and use of novel electrolytes to deliver a battery cell exceedi ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  3. High SYmmetric PowER (HYPER) Battery

    SBC: TYFAST ENERGY CORP            Topic: 1

    This proposal aims to rethink the fundamental design of a high-power lithium-ion battery to realize the combined properties of high energy density, ultrafast charging and long cycle life. The team of Tyfast, 2matls, SpectraPower and UC San Diego have demonstrated electrode breakthroughs, experience in designing fast-charging batteries and use of novel electrolytes to deliver a battery cell exceedi ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  4. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  5. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  6. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  7. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  8. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  9. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  10. Data-Driven Hypersonic Turbulence Modeling Toolset

    SBC: ATA ENGINEERING, INC.            Topic: N22AT016

    Development of hypersonic aircraft and weapon systems has become a critical focus for the Department of Defense to maintain global strike and projection of force capabilities. Despite decades of research, traditional computational fluid dynamics (CFD) methods are either incapable of adequately predicting complex features in hypersonic flows or too expensive to be of practical use for vehicle desig ...

    STTR Phase II 2024 Department of DefenseNavy
US Flag An Official Website of the United States Government