You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. PREFAB MODULAR LIQUID-COOLED MICRO DATA CENTER

    SBC: Flexnode Inc            Topic: 1

    "To enable the future needs of efficient computing for edge data centers, Flexnode and its partners, the University of Maryland (UMD), Boeing, Iceotope, SHoP Architects, and Arup, propose to develop a prefabricated modular micro data center with unprecedented energy efficiency and power density. The proposed system leverages four key component and system-level technology advancements: (a) a novel, ...

    STTR Phase I 2024 Department of EnergyARPA-E
  2. PREFAB MODULAR LIQUID-COOLED MICRO DATA CENTER

    SBC: Flexnode Inc            Topic: 1

    "To enable the future needs of efficient computing for edge data centers, Flexnode and its partners, the University of Maryland (UMD), Boeing, Iceotope, SHoP Architects, and Arup, propose to develop a prefabricated modular micro data center with unprecedented energy efficiency and power density. The proposed system leverages four key component and system-level technology advancements: (a) a novel, ...

    STTR Phase II 2024 Department of EnergyARPA-E
  3. PREFAB MODULAR LIQUID-COOLED MICRO DATA CENTER

    SBC: Flexnode Inc            Topic: 1

    "To enable the future needs of efficient computing for edge data centers, Flexnode and its partners, the University of Maryland (UMD), Boeing, Iceotope, SHoP Architects, and Arup, propose to develop a prefabricated modular micro data center with unprecedented energy efficiency and power density. The proposed system leverages four key component and system-level technology advancements: (a) a novel, ...

    STTR Phase II 2024 Department of EnergyARPA-E
  4. SAVANT: Sequential Advancement of Technology for Deep Borehole Disposal

    SBC: Deep Isolation, Inc.            Topic: C

    This project supports the ARPA-E Mission Area of “improving management, clean-up and disposal of radioactive waste and spent nuclear fuel”. A series of tests and demonstrations for deep borehole disposal canisters at the Deep Borehole Demonstration Center in Cameron, Texas - coupled with development of a US supply chain and global tech-to-market partnerships - will mature the canister to Techn ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  5. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  6. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  7. Liquefied Gas Electrolytes for Next-Gen EV Batteries

    SBC: SOUTH 8 TECHNOLOGIES, INC.            Topic: 1

    This combined phase SBIR I,II,IIS proposal seeks to develop and demonstrate high power lithium battery cells having up to 330 Wh-kg specific energy with capability to fast charge using a novel Liquefied Gas Electrolyte (LiGas) technology. The LiGas electrolyte uses safe and non-toxic, non-corrosive gasses which are liquefied under moderate pressures and are easily contained in standard cylindrical ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  8. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase I 2023 Department of EnergyARPA-E
  9. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase II 2023 Department of EnergyARPA-E
  10. OPERA: Optimizing a potassium-ion electrolyte for revolutionary automotive batteries

    SBC: Project K Energy, Inc.            Topic: 1

    We propose to develop and commercialize a potassium-ion battery for use in electric vehicles (EVs). The fundamental properties of potassium transport in organic electrolytes allow for fast charging from 0 to 80% capacity in less than 5 minutes. The battery will pair a stable, open-framework cathode based on a Prussian blue analog (PBA) with a conventional graphite anode for a high-performance batt ...

    SBIR Phase II 2023 Department of EnergyARPA-E
US Flag An Official Website of the United States Government