You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    SBC: COMPUTATIONAL SCIENCES LLC            Topic: A13AT008

    The project will remove a key difficulty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deteriorate over long times due to the treatment of artificial outer boundaries. We propose to develop a universal algorithm and software that will correct this problem by employing the Huygens'principl ...

    STTR Phase I 2013 Department of DefenseArmy
  2. Compact, Low-Cost THz Test System

    SBC: TeraMetrix, LLC            Topic: AF12BT08

    ABSTRACT: In this Phase I STTR project, we propose to demonstrate the feasibility of developing a low cost, compact, time-domain terahertz (TD-THz) spectrometer specifically for the characterization of semiconductor materials over a range of temperatures, electric fields, and magnetic fields. In phase I, we will configure fiber optic coupled TD-THz instrumentation to make measurements on a sampl ...

    STTR Phase I 2013 Department of DefenseAir Force
  3. Cryodeposit Mitigation and Removal Techniques for Radiometric Calibration Chambers

    SBC: OPTICAL SCIENCES CORPORATION            Topic: AF12BT10

    ABSTRACT: Optical Sciences Corporation (OSC) and the University of Alabama in Huntsville"s Center for Applied Optics (UAH/CAO) will demonstrate the feasibility and present a plan for developing optical instrumentation for the monitoring, mitigation, and removal of cryodeposits accumulated on optical and mechanical surfaces in cryogenic-vacuum radiometric calibration chambers. OSC will investigat ...

    STTR Phase I 2013 Department of DefenseAir Force
  4. Development of Next-Generation Composite Flywheel Design for Shock and Vibration Tolerant, High Density Rotating Energy Storage

    SBC: PowerTHRU            Topic: N13AT022

    PowerTHRU Corporation proposes to meet or exceed the requirements of this STTR by utilizing its extensive experience in carbon fiber based high speed flywheel systems, to design and build a 100K RPM flywheel system. Unlike steel flywheel technologies that are limited by the speed in which they can safely rotate, PowerTHRU has already demonstrated that 50,000 RPM carbon fiber flywheels can be desig ...

    STTR Phase I 2013 Department of DefenseNavy
  5. Dive Helmet Noise Quieting

    SBC: OCEANIT LABORATORIES INC            Topic: N12AT020

    Helmeted navy divers are exposed to high levels of noise from self-generated mechanisms, such as regulator exhaust, and external sources, such as underwater tool-generated noise. Noise exposure limits can be easily exceeded especially if effective communications through helmet-mounted speakers is required. A multi-faceted approach is proposed to reduce self-generated noise as well as overall helme ...

    STTR Phase II 2013 Department of DefenseNavy
  6. First-Principles-Based Framework for Discovery and Design of Sustainable Non-Rare-Earth High-Temperature Alloy Systems

    SBC: CFD RESEARCH CORPORATION            Topic: OSD12T06

    In this STTR Phase I project, CFD Research Corporation and University of Nebraska at Omaha will develop a preliminary computationally-driven first-principles framework for discovery and design of non-RE-containing alloys for high temperature applications. While rare-earth (RE) based alloys have played a pivotal role in modern defense and high-tech industry, sustainability of RE-based materials is ...

    STTR Phase I 2013 Department of DefenseAir Force
  7. High Fidelity Obscurant Modeling for Sensor Simulations

    SBC: SIMULATION TECHNOLOGIES, INC            Topic: A11aT004

    A technique that enables new methods of obscurant modeling with faster rendering while maintaining or improving physical fidelity is proposed. The proposed technique not only exhibits the statistics of voxel based obscurants, but matches real-world data as well. The main objective from Phase II efforts will be a further refinement of the flow field and particle technique of generating physically c ...

    STTR Phase II 2013 Department of DefenseArmy
  8. High-level tools and languages for faster Intelligent Tutoring System(ITS) model development

    SBC: SOAR TECHNOLOGY INC            Topic: N11AT032

    Intelligent tutoring systems (ITSs) hold the promise of dramatically decreasing the cost of training while also providing consistent, formalized instruction with automated trainee-assessment tools. However, the adoption of ITSs has been limited because: (1) most ITS systems are developed for specific, well defined, domains and cannot be easily adapted; and (2) they are time consuming and expensive ...

    STTR Phase II 2013 Department of DefenseNavy
  9. Improve pyrotechnic smoke formulations that produce low flame

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: A11aT026

    The objective of this research is to develop materials that replace the current generation of visible smoke formulations used by the U.S. military. In particular the materials must produce low or no flame so that they don't present a fire hazard, have relatively low toxicity, and are efficient. The efficiency is defined in a figure of merit that combines fill factor, yield factor, extinctio ...

    STTR Phase II 2013 Department of DefenseArmy
  10. Liquid Crystal-based Sensors for Detection of Airborne Toxic Chemicals for Integration with Unmanned Robotic Systems

    SBC: Platypus Technologies, LLC            Topic: A13AT004

    We aim to develop lightweight and rugged liquid crystal (LC)-based sensors suitable for integration into small unmanned vehicles, including hand-launched UAVs and throwable robots. For Phase I proof of concept, we propose to develop sensors that detect DMMP, H2S, NO2 and NH3. These gases include simulants of chemical warfare agents and toxic industrial chemicals, selected for their relevance to ...

    STTR Phase I 2013 Department of DefenseArmy
US Flag An Official Website of the United States Government