You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. ADAPT: Adaptive Device for Adaptive Performance Training

    SBC: APTIMA INC            Topic: N09T028

    Irregular warfare is increasingly the dominant form of military engagement. It is dynamic and unforgiving of errors, requiring warfighters to adapt fluidly to novel, complex, and ill-defined problems. The goal of this Phase II STTR is to implement and refine a training tool that builds adaptive expertise. The system teaches the learner to recognize and understand the fundamental principles underly ...

    STTR Phase II 2010 Department of DefenseNavy
  2. Adaptive Integrated Multi-Modal Sensing Array

    SBC: POLARIS SENSOR TECHNOLOGIES INC            Topic: AF08BT02

    Nanoscale infrared detectors are emerging as a potentially powerful alternative to traditional infrared detector technologies. The University of New Mexico has developed dots in a double well (DDWELL) quantum dot infrared photodetectors which have a spectral responsivity that can be tuned by controlling the bias voltage applied. In this Phase II effort, Polaris Sensor and UNM would fabricate a g ...

    STTR Phase II 2010 Department of DefenseAir Force
  3. Adaptive multi-mode photodetector and focal plane array

    SBC: APPLIED NANOFEMTO TECHNOLOGIES LLC            Topic: AF09BT37

    Multi-modal (including spatial, spectral and polarimetric) photodetectors and focal plane arrays (FPA) can dramatically enhance the target detection, tracking and identification capability of a battle field sensing system. Most existing multi-spectral polarimetric sensing systems employ dispersive optics (gratings or prisms), or external polarizer technologies to obtain spectral and polarimetric c ...

    STTR Phase I 2010 Department of DefenseAir Force
  4. Advanced Auditory Modeling for Acoustic Analysis

    SBC: BIOMIMETIC SYSTEMS, INC.            Topic: AF09BT12

    The human auditory system out-performs all current machine-based systems for analyzing and interpreting real world acoustic environments. Central to that human performance is the method of auditory scene analysis used by listeners and the mechanisms that allow creation of auditory objects. BioMimetic Systems has implemented real-time biomimetic algorithms in embedded hardware based on the ‘whatâ ...

    STTR Phase I 2010 Department of DefenseAir Force
  5. Advanced Interceptor Infra-Red Search and Track System (IRSTS) for Missile Defense Applications

    SBC: OCEANIT LABORATORIES INC            Topic: MDA08T002

    The Oceanit¡¦s/APL Foveal InfraRed Search and Track (FIRST) prototype is a dual channel cryogenic WFOV optical sensor system. FIRST provides multifaceted support for an airborne IR search and track and uses the unique Multi-target-tracking Optical Sensor-array Technology (MOST) sensor chip, which has been developed at MDA. FIRST supports instantaneous field-of-view up to 90 degrees, with 360 deg ...

    STTR Phase II 2010 Department of DefenseMissile Defense Agency
  6. Advanced Mediator Architectures for Efficient Electron Transfer in Enzymatic Fuel Cell Electrodes

    SBC: CFD RESEARCH CORPORATION            Topic: AF09BT03

    Our objective is to develop advanced mediator architectures for efficient electron transfer in enzymatic fuel cells (EFCs) for low power systems. The proposed EFC will leverage ongoing research at both CFDRC and Michigan State University to provide a fully-integrated lightweight, low-cost, manufacturable, and renewable power supply, for various military and civilian applications. EFC systems offer ...

    STTR Phase I 2010 Department of DefenseAir Force
  7. Aerosol Plasmon-Enhanced Laser Desorption Ionization

    SBC: AERODYNE RESEARCH INC            Topic: AF09BT34

    Aerodyne Research, Inc. (ARI) and The University of Massachusetts at Amherst will collaborate to develop a novel technique for efficient mass spectrometric analysis of high molecular weight analytes such as proteins and polymers. Laser desorption and ionization with minimal analyte fragmentaton will be carried out on metal nanoparticle substrates in a particle beam sampled by Aerodyne’s proprie ...

    STTR Phase I 2010 Department of DefenseAir Force
  8. An Automated, High Throughput, Filter-Free Pathogen Preconcentrator

    SBC: CFD RESEARCH CORPORATION            Topic: A10AT016

    Accurate real-time waterborne pathogen detection is of paramount importance to security of U.S. military forces and installations. Fieldable high-throughput pathogen concentration is a critical analytical need for enhanced detection performance. Existing concentration methods are time-consuming, bulky, labor-intensive, power- and reagent-hungry, and consequently ill-suited for battlefield deployme ...

    STTR Phase I 2010 Department of DefenseArmy
  9. A Near Autonomous Combat Casualty Extraction Robotic System

    SBC: Hstar Technologies            Topic: A10AT028

    Hstar proposes a near autonomous combat casualty extraction robot (c2Exbot) system that: 1) supports autonomous dexterous manipulation, safe patient lifting and near autonomous navigation control, 2) utilizes a supervisory telepresence operation mechanism, 3) provides near autonomous patient diagnosis, injury assessment and emergency treatment, and d) provides semi-autonomous patient monitoring an ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Antenna design by genetic algorithms

    SBC: EMAG TECHNOLOGIES, INC.            Topic: N08T031

    The overall objective of this STTR project is to develop a comprehensive CAD environment for design and optimization of antennas and arrays on complex platforms such as topsides of naval surface combatants. EMAG Technologies Inc. has teamed up with the University of Michigan to develop a novel solution for placement of antennas on such platforms using a number of new physics-based genetic algorith ...

    STTR Phase II 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government